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Abstract
The cusp anomalous dimension is a ubiquitous quantity in four-dimensional
gauge theories, ranging from QCD to maximally supersymmetricN = 4 Yang–
Mills theory, and it is one of the most thoroughly investigated observables in
the AdS/CFT correspondence. In planar N = 4 SYM theory, its perturbative
expansion at weak coupling has a finite radius of convergence while at strong
coupling it admits an expansion in inverse powers of the ’t Hooft coupling
which is given by a non-Borel summable asymptotic series. We study the cusp
anomalous dimension in the transition regime from strong to weak coupling and
argue that the transition is driven by nonperturbative, exponentially suppressed
corrections. To compute these corrections, we revisit the calculation of the cusp
anomalous dimension in planar N = 4 SYM theory and extend the previous
analysis by taking into account nonperturbative effects. We demonstrate that
the scale parameterizing nonperturbative corrections coincides with the mass
gap of the two-dimensional bosonic O(6) sigma model embedded into the
AdS5 ×S5 string theory. This result is in agreement with the prediction coming
from the string theory consideration.

PACS numbers: 11.15.Me, 11.25.Tq, 11.30.Pb
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1. Introduction

The AdS/CFT correspondence provides a powerful framework for studying maximally
supersymmetric N = 4 Yang–Mills theory (SYM) at strong coupling [1]. At present, one of
the best-studied examples of the conjectured gauge/string duality is the relationship between
the anomalous dimensions of Wilson operators in planar N = 4 theory in the so-called SL(2)

sector and energy spectrum of folded strings spinning on AdS5 × S5 [2, 3]. The Wilson
operators in this sector are given by single trace operators built from L copies of the same
complex scalar field and N light-cone components of the covariant derivatives. These quantum
numbers define, correspondingly, the twist and the Lorentz spin of the Wilson operators in
N = 4 SYM theory (for a review, see [4]). In a dual string theory description [2, 3], they are
identified as angular momenta of the string spinning on S5 and AdS5 parts of the background.

In general, anomalous dimensions in planar N = 4 theory in the SL(2) sector are
nontrivial functions of the ’t Hooft coupling g2 = g2

YMNc/(4π)2 and quantum numbers of
Wilson operators—twist L and Lorentz spin N. Significant simplification occurs in the limit
[5] when the Lorentz spin grows exponentially with the twist, L ∼ ln N with N → ∞. In
this limit, the anomalous dimensions scale logarithmically with N for arbitrary coupling and
the minimal anomalous dimension has the following scaling behavior [5–9]:

γN,L(g) = [2�cusp(g) + ε(g, j)] ln N + · · · , (1.1)

where j = L/ ln N is an appropriate scaling variable and the ellipses denote terms suppressed
by powers of 1/L. Here, the coefficient in front of ln N is split into the sum of two functions
in such a way that ε(g, j) carries the dependence on the twist and it vanishes for j = 0. The
first term inside the square brackets in (1.1) has a universal, twist independent form [10, 11].
It involves the function of the coupling constant known as the cusp anomalous dimension.
This anomalous dimension was introduced in [10] to describe specific (cusp) ultraviolet (UV)
divergences of Wilson loops [12, 13] with a light-like cusp on the integration contour [14].
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The cusp anomalous dimension plays a distinguished rôle in N = 4 theory and, in general, in
four-dimensional Yang–Mills theories since, aside from logarithmic scaling of the anomalous
dimension (1.1), it also controls infrared divergences of scattering amplitudes [15], Sudakov
asymptotics of elastic form factors [16], gluon Regge trajectories [17], etc.

According to (1.1), the asymptotic behavior of the minimal anomalous dimension is
determined by two independent functions, �cusp(g) and ε(g, j). At weak coupling, these
functions are given by series in powers of g2 and the first few terms of the expansion can be
computed in perturbation theory. At strong coupling, the AdS/CFT correspondence allows
us to obtain the expansion of �cusp(g) and ε(g, j) in powers of 1/g from the semiclassical
expansion of the energy of the folded spinning string. Being combined together, the weak and
strong coupling expansions define asymptotic behavior of these functions at the boundaries of
(semi-infinite) interval 0 � g < ∞. The following questions arise: what are the corresponding
interpolating functions for arbitrary g? How does the transition from the weak to strong
coupling regimes occur? These are the questions that we address in this paper.

At weak coupling, the functions �cusp(g) and ε(g, j) can be found in a generic
(supersymmetric) Yang–Mills theory in the planar limit by making use of the remarkable
property of integrability. The Bethe ansatz approach to computing these functions at weak
coupling was developed in [5, 11, 18]. It was extended in [7, 19] to all loops in N = 4 SYM
theory leading to integral BES/FRS equations for �cusp(g) and ε(g, j) valid in the planar
limit for arbitrary values of the scaling parameter j and the coupling constant g. For the cusp
anomalous dimension, the solution to the BES equation at weak coupling is in agreement with
the most advanced explicit four-loop perturbative calculation [20] and it yields a perturbative
series for �cusp(g) which has a finite radius of convergence [19]. The BES equation was also
analyzed at strong coupling [21–24] but constructing its solution for �cusp(g) turned out to be
a nontrivial task.

The problem was solved in [25, 26], where the cusp anomalous dimension was found in
the form of an asymptotic series in 1/g. It turned out that the coefficients of this expansion have
the same sign and grow factorially at higher orders. As a result, the asymptotic 1/g expansion
of �cusp(g) is given by a non-Borel summable series which suffers from ambiguities that are
exponentially small for g → ∞. This suggests that the cusp anomalous dimension receives
nonperturbative corrections at strong coupling [25]:

�cusp(g) =
∞∑

k=−1

ck/g
k − σ

4
√

2
m2

cusp + o
(
m2

cusp

)
. (1.2)

Here the dependence of the nonperturbative scale m2
cusp on the coupling constant mcusp ∼

g1/4 e−πg follows, through a standard analysis [27, 28], from the large order behavior of the
expansion coefficients, ck ∼ �

(
k + 1

2

)
for k → ∞. The value of the coefficient σ in (1.2)

depends on the regularization of Borel singularities in the perturbative 1/g expansion, and the
numerical prefactor was introduced for later convenience.

Note that the expression for the nonperturbative scale m2
cusp looks similar to that for the

mass gap in an asymptotically free field theory with the coupling constant ∼ 1/g. An important
difference is, however, that m2

cusp is a dimensionless function of the ’t Hooft coupling. This
is perfectly consistent with the fact that the N = 4 model is a conformal field theory and,
therefore, it does not involve any dimensionfull scale. Nevertheless, as we will show in this
paper, the nonperturbative scale m2

cusp is indeed related to the mass gap in the two-dimensional
bosonic O(6) sigma model.

Relation (1.2) sheds light on the properties of �cusp(g) in the transition region g ∼ 1.
Going from g � 1 to g = 1, we find that m2

cusp increases and, as a consequence,
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nonperturbative O
(
m2

cusp

)
corrections to �cusp(g) become comparable with perturbative

O(1/g) corrections. We will argue in this paper that the nonperturbative corrections play
a crucial role in the transition from the strong to weak coupling regime. To describe the
transition, we present a simplified model for the cusp anomalous dimension. This model
correctly captures the properties of �cusp(g) at strong coupling and, most importantly, it allows
us to obtain a closed expression for the cusp anomalous dimension which turns out to be
remarkably close to the exact value of �cusp(g) throughout the entire range of the coupling
constant.

In the AdS/CFT correspondence, relation (1.2) should follow from the semiclassical
expansion of the energy of the quantized folded spinning string [2, 3]. On the right-hand
side of (1.2), the coefficient c−1 corresponds to the classical energy and ck describes (k + 1)th
loop correction. Indeed, the explicit two-loop stringy calculation [29] yields the expressions
for c−1, c0 and c1 which are in a perfect agreement with (1.2)4. However, the semiclassical
approach does not allow us to calculate nonperturbative corrections to �cusp(g), and verification
of (1.2) remains a challenge for the string theory.

Recently, Alday and Maldacena [6] put forward an interesting proposal that the scaling
function ε(g, j) entering (1.1) can be found exactly at strong coupling in terms of a nonlinear
O(6) bosonic sigma model embedded into the AdS5 × S5 model. More precisely, using the
dual description of Wilson operators as folded strings spinning on AdS5 × S5 and taking into
account the one-loop stringy corrections to these states [8], they conjectured that the scaling
function ε(g, j) should be related at strong coupling to the energy density εO(6) in the ground
state of the O(6) model corresponding to the particle density ρO(6) = j/2:

εO(6) = ε(g, j) + j

2
, mO(6) = kg1/4 e−πg [1 + O(1/g)] . (1.3)

This relation should hold at strong coupling and j/mO(6) = fixed. Here, the scale mO(6) is
identified as the dynamically generated mass gap in the O(6) model with k = 23/4π1/4

/
�

(
5
4

)
being the normalization factor.

The O(6) sigma model is an exactly solvable theory [31–34], and the dependence of εO(6)

on the mass scale mO(6) and the density of particles ρO(6) can be found exactly with the help
of thermodynamical Bethe ansatz equations. Together with (1.3), this allows us to determine
the scaling function ε(g, j) at strong coupling. In particular, for j/mO(6) � 1, the asymptotic
behavior of ε(g, j) follows from the known expression for the energy density of the O(6)
model in the (nonperturbative) regime of small density of particles [6, 34–36]:

ε(j, g) + j = m2

[
j

m
+

π2

24

(
j

m

)3

+ O(j 4/m4)

]
, (1.4)

with m ≡ mO(6). For j/mO(6) � 1, the scaling function ε(g, j) admits a perturbative expansion
in inverse powers of g with the coefficients enhanced by powers of ln � (with � = j/(4g) � 1
[6, 8].

ε(g, j) + j = 2�2

[
g +

1

π

(
3

4
− ln �

)
+

1

4π2g

(q02

2
− 3 ln � + 4(ln �)2

)
+O(1/g2)

]
+ O(�4).

This expansion was derived both in string theory [37] and in gauge theory [30, 38, 39]
yielding, however, different results for the constant q02. The reason for the disagreement
remains unclear. The first two terms of this expansion were also computed in string theory
[37] and they were found to be in a disagreement with gauge theory calculation [30, 38, 39].

4 The same result was obtained using a different approach from the quantum string Bethe ansatz in [9, 30].
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Remarkably enough, relation (1.3) was established in planar N = 4 SYM theory at strong
coupling [35] using the conjectured integrability of the dilatation operator [7]. The mass scale
mO(6) was computed both numerically [36] and analytically [35, 38], and it was found to be in
a perfect agreement with (1.3). This result is extremely nontrivial given the fact that the scale
mO(6) has a different origin in gauge and in string theory sides of AdS/CFT. In string theory,
it is generated by the dimensional transmutation mechanism in two-dimensional effective
theory describing dynamics of massless modes in the AdS5 × S5 sigma model. In gauge
theory, the same scale parameterizes nonperturbative corrections to anomalous dimensions in
four-dimensional Yang–Mills theory at strong coupling. It is interesting to note that a similar
phenomenon, when two different quantities computed in four-dimensional gauge theory and in
dual two-dimensional sigma model coincide, has already been observed in the BPS spectrum
in N = 2 supersymmetric Yang–Mills theory [40, 41]. We would like the mention that the
precise matching of the leading coefficients in perturbative expansion of spinning string energy
and anomalous dimensions on the gauge side was previously found in [42, 43, 44]. Relation
(1.3) implies that for the anomalous dimensions (1.1) the gauge/string correspondence holds
at the level of nonperturbative corrections.

As we just explained, the functions �cusp(g) and ε(g, j) entering (1.1) receive
nonperturbative contributions at strong coupling described by the scales mcusp and mO(6),
respectively. In N = 4 SYM theory, these functions satisfy two different integral equations
[7, 19] and there is no a priori reason why the scales mcusp and mO(6) should be related to each
other. Nevertheless, examining their leading order expressions, equations (1.2) and (1.3), we
note that they have the same dependence on the coupling constant. One may wonder whether
subleading O(1/g) corrections are also related to each other. In this paper, we show that the
two scales coincide at strong coupling to any order of 1/g expansion:

mcusp = mO(6), (1.5)

thus proving that nonperturbative corrections to the cusp anomalous dimension (1.2) and to
the scaling function (1.4) are parameterized by the same scale.

Relations (1.2) and (1.5) also have an interpretation in string theory. The cusp anomalous
dimension has the meaning of the energy density of a folded string spinning on AdS3 [2, 6].
As such, it receives quantum corrections from both massive and massless excitations of this
string in the AdS5 × S5 sigma model. The O(6) model emerges in this context as the effective
theory describing the dynamics of massless modes. In distinction with the scaling function
ε(g, j), for which the massive modes decouple in the limit j/mO(6) = fixed and g → ∞,
the cusp anomalous dimension is not described entirely by the O(6) model. Nevertheless,
it is expected that the leading nonperturbative corrections to �cusp(g) should originate from
nontrivial infrared dynamics of the massless excitations and, therefore, they should be related to
nonperturbative corrections to the vacuum energy density in the O(6) model. As a consequence,
�cusp(g) should receive exponentially suppressed corrections proportional to the square of the
O(6) mass gap ∼ m2

O(6). We show in this paper by explicit calculation that this is indeed the
case.

The paper is organized as follows. In section 2, we revisit the calculation of the cusp
anomalous dimension in planar N = 4 SYM theory and construct the exact solution for
�cusp(g). In section 3, we analyze the expressions obtained at strong coupling and identify
nonperturbative corrections to �cusp(g). In section 4, we compute subleading corrections to
the nonperturbative scales mcusp and mO(6) and show that they are the same for the two scales.
Then, we extend our analysis to higher orders in 1/g and demonstrate that the two scales
coincide. Section 5 contains concluding remarks. Some technical details of our calculations
are presented in appendices.
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2. Cusp anomalous dimension in N = 4 SYM

The cusp anomalous dimension can be found in planar N = 4 SYM theory for arbitrary
coupling as a solution to the BES equation [19]. At strong coupling, �cusp(g) was constructed
in [25, 26] in the form of perturbative expansion in 1/g. The coefficients of this series grow
factorially at higher orders, thus indicating that �cusp(g) receives nonperturbative corrections
which are exponentially small at strong coupling (equation (1.2)). To identity such corrections,
we revisit in this section the calculation of the cusp anomalous dimension and construct the
exact solution to the BES equation for arbitrary coupling.

2.1. Integral equation and mass scale

In the Bethe ansatz approach, the cusp anomalous dimension is determined by the behavior
around the origin of the auxiliary function γ (t) related to the density of Bethe roots:

�cusp(g) = −8ig2 lim
t→0

γ (t)/t. (2.1)

The function γ (t) depends on the ’t Hooft coupling and has the form

γ (t) = γ+(t) + iγ−(t), (2.2)

where γ±(t) are real functions of t with a definite parity γ±(±t) = ±γ±(t). For arbitrary
coupling, the functions γ±(t) satisfy the (infinite-dimensional) system of integral equations:∫ ∞

0

dt

t
J2n−1(t)

[
γ−(t)

1 − e−t/(2g)
+

γ+(t)

et/(2g) − 1

]
= 1

2
δn,1,

(2.3)∫ ∞

0

dt

t
J2n(t)

[
γ+(t)

1 − e−t/(2g)
− γ−(t)

et/(2g) − 1

]
= 0,

with n � 1 and Jn(t) being the Bessel functions. These relations are equivalent to the BES
equation [19] provided that γ±(t) verify certain analyticity conditions specified in section 2.2.

As was shown in [25, 35], equations (2.3) can be significantly simplified with the help of
the transformation γ (t) → �(t)5:

�(t) =
(

1 + i coth
t

4g

)
γ (t) ≡ �+(t) + i�−(t). (2.4)

We find from (2.1) and (2.4) the following representation for the cusp anomalous dimension:

�cusp(g) = −2g�(0). (2.5)

It follows from (2.2) and (2.3) that �±(t) are real functions with a definite parity, �±(−t) =
±�±(t), satisfying the system of integral equations:∫ ∞

0
dt cos(ut)[�−(t) − �+(t)] = 2,

(2.6)∫ ∞

0
dt sin(ut)[�−(t) + �+(t)] = 0,

with u being an arbitrary real parameter such that −1 � u � 1. Since �±(t) take real values,
we can rewrite these relations in a compact form:∫ ∞

0
dt[eiut�−(t) − e−iut�+(t)] = 2. (2.7)

5 With a slight abuse of notations, we use here the same notation as for the Euler gamma function.
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To recover (2.3), we apply (2.4), replace in (2.6) the trigonometric functions by their Bessel
series expansions

cos(ut) = 2
∑
n�1

(2n − 1)
cos((2n − 1)ϕ)

cos ϕ

J2n−1(t)

t
,

(2.8)
sin(ut) = 2

∑
n�1

(2n)
sin(2nϕ)

cos ϕ

J2n(t)

t
,

with u = sin ϕ, and finally compare coefficients in front of cos((2n − 1)ϕ)/cos ϕ and
sin(2nϕ)/cos ϕ on both sides of (2.6). It is important to stress that, doing this calculation,
we interchanged the sum over n with the integral over t. This is only justified for ϕ real and,
therefore, relation (2.6) only holds for −1 � u � 1.

Comparing (2.7) and (2.3), we observe that the transformation γ± → �± eliminates the
dependence of the integral kernel on the left-hand side of (2.7) on the coupling constant.
One may then wonder where does the dependence of the functions �±(t) on the coupling
constant come from? We will show in the following subsection that it is dictated by additional
conditions imposed on analytical properties of solutions to (2.7).

Relations (2.5) and (2.6) were used in [25] to derive an asymptotic (perturbative) expansion
of �cusp(g) in powers of 1/g. This series however suffers from Borel singularities, and we
expect that the cusp anomalous dimension should receive nonperturbative corrections ∼ e−2πg

exponentially small at strong coupling. As was already mentioned in section 1, similar
corrections are also present in the scaling function ε(g, j) which controls the asymptotic
behavior of the anomalous dimensions (1.1) in the limit when the Lorentz spin of Wilson
operators grows exponentially with their twist. According to (1.3), for j/mO(6) = fixed and
g → ∞, the scaling function coincides with the energy density of the O(6) model embedded
into AdS5 × S5. The mass gap of this model defines a new nonperturbative scale mO(6) in
AdS/CFT. Its dependence on the coupling g follows univocally from the FRS equation and it
has the following form [35, 38]:

mO(6) = 8
√

2

π2
e−πg − 8g

π
e−πgRe

[∫ ∞

0

dt ei(t−π/4)

t + iπg
(�+(t) + i�−(t))

]
, (2.9)

where �±(t) are solutions to (2.7). To compute the mass gap (2.9), we have to solve the
integral equation (2.7) and, then, substitute the resulting expression for �±(t) into (2.9). Note
that the same functions also determine the cusp anomalous dimension (2.5).

Later in the paper, we will construct a solution to the integral equation (2.7) and, then,
apply (2.5) to compute nonperturbative corrections to �cusp(g) at strong coupling.

2.2. Analyticity conditions

The integral equations (2.7) and (2.3) determine �±(t) and γ±(t), or equivalently the functions
�(t) and γ (t), up to a contribution of zero modes. The latter satisfy the same integral equations
(2.7) and (2.3) but without an inhomogeneous term on the right-hand side.

To fix the zero modes, we have to impose additional conditions on solutions to (2.7)
and (2.3). These conditions follow unambiguously from the BES equation [23, 25] and they
can be formulated as a requirement that γ±(t) should be entire functions of t which admit a
representation in the form of Neumann series over the Bessel functions

γ−(t) = 2
∑
n�1

(2n − 1)J2n−1(t)γ2n−1, γ+(t) = 2
∑
n�1

(2n)J2n(t)γ2n, (2.10)

7
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with the expansion coefficients γ2n−1 and γ2n depending on the coupling constant. This implies
in particular that the series on the right-hand side of (2.10) are convergent on the real axis.
Using orthogonality conditions for the Bessel functions, we obtain from (2.10)

γ2n−1 =
∫ ∞

0

dt

t
J2n−1(t)γ−(t), γ2n =

∫ ∞

0

dt

t
J2n(t)γ+(t). (2.11)

Here, we assumed that the sum over n on the right-hand side of (2.10) can be interchanged
with the integral over t. We will show below that relations (2.10) and (2.11) determine a
unique solution to the system (2.3).

The coefficient γ1 plays a special role in our analysis since it determines the cusp
anomalous dimension (2.1):

�cusp(g) = 8g2γ1(g). (2.12)

Here we applied (2.2) and (2.10) and took into account small-t behavior of the Bessel functions,
Jn(t) ∼ tn as t → 0.

Let us now translate (2.10) and (2.11) into properties of the functions �±(t), or
equivalently �(t). It is convenient to rewrite relation (2.4) as

�(it) = γ (it)
sin

(
t

4g
+ π

4

)
sin

(
t

4g

)
sin

(
π
4

) = γ (it)
√

2
∞∏

k=−∞

t − 4πg
(
k − 1

4

)
t − 4πgk

. (2.13)

Since γ (it) is an entire function in the complex t-plane, we conclude from (2.13) that �(it)
has an infinite number of zeros, �(itzeros) = 0, and poles, �(it) ∼ 1/(t − tpoles), on a real
t-axis located at

tzeros = 4πg
(
� − 1

4

)
, tpoles = 4πg�′, (2.14)

where �, �′ ∈ Z and �′ �= 0 so that �(it) is regular at the origin (see equation (2.1)). Note that
�(it) has an additional (infinite) set of zeros coming from the function γ (it) but, in distinction
with (2.14), their position is not fixed. Later in the paper, we will construct a solution to the
integral equation (2.6) which satisfies relations (2.14).

2.3. Toy model

To understand the relationship between analytical properties of �(it) and properties of the
cusp anomalous dimension, it is instructive to slightly simplify the problem and consider a
‘toy’ model in which the function �(it) is replaced with �(toy)(it).

We require that �(toy)(it) satisfies the same integral equation (2.6) and define, following
(2.5), the cusp anomalous dimension in the toy model as

�(toy)
cusp (g) = −2g�(toy)(0). (2.15)

The only difference compared to �(it) is that �(toy)(it) has different analytical properties
dictated by the relation

�(toy)(it) = γ (toy)(it)
t + πg

t
, (2.16)

while γ (toy)(it) has the same analytical properties as the function γ (it)6. This relation can
be considered as a simplified version of (2.13). Indeed, it can be obtained from (2.13) if we

6 Note that the function γ (toy)(t) does no longer satisfy the integral equation (2.3). Substitution of (2.16) into (2.7)
yields an integral equation for γ (toy)(t) which can be obtained from (2.3) by replacing 1/(1 − e−t/(2g)) → πg

2t
+ 1

2
and 1/(et/(2g) − 1) → πg

2t
− 1

2 in the kernel on the left-hand side of (2.3).
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retained in the product only one term with k = 0. As compared with (2.14), the function
�(toy)(it) does not have poles and it vanishes for t = −πg.

The main advantage of the toy model is that, as we will show in section 2.8, the expression
for �

(toy)
cusp (g) can be found in a closed form for an arbitrary value of the coupling constant (see

equation (2.50)). We will then compare it with the exact expression for �cusp(g) and identify
the difference between the two functions.

2.4. Exact bounds and unicity of the solution

Before we turn to finding a solution to (2.6), let us demonstrate that this integral equation,
supplemented with the additional conditions (2.10) and (2.11) on its solutions, leads to
nontrivial constraints for the cusp anomalous dimension valid for arbitrary coupling g.

Let us multiply both sides of the two relations in (2.3) by 2(2n − 1)γ2n−1 and 2(2n)γ2n,
respectively, and perform summation over n � 1. Then, we convert the sums into functions
γ±(t) using (2.10) and add the second relation to the first one to obtain7

γ1 =
∫ ∞

0

dt

t

(γ+(t))
2 + (γ−(t))2

1 − e−t/(2g)
. (2.17)

Since γ±(t) are real functions of t and the denominator is positively definite for 0 � t < ∞,
this relation leads to the following inequality:

γ1 �
∫ ∞

0

dt

t
(γ−(t))2 � 2γ 2

1 � 0. (2.18)

Here, we replaced the function γ−(t) by its Bessel series (2.10) and made use of the
orthogonality condition for the Bessel functions with odd indices. We deduce from (2.18) that

0 � γ1 � 1
2 (2.19)

and, then, apply (2.12) to translate this inequality into the following relation for the cusp
anomalous dimension:

0 � �cusp(g) � 4g2. (2.20)

We would like to stress that this relation should hold in planar N = 4 SYM theory for arbitrary
coupling g.

Note that the lower bound on the cusp anomalous dimension, �cusp(g) � 0, holds in
any gauge theory [11]. It is the upper bound �cusp(g) � 4g2 that is a distinguished feature
of N = 4 theory. Let us verify the validity of (2.20). At weak coupling, �cusp(g) admits
perturbative expansion in powers of g2 [20]:

�cusp(g) = 4g2

[
1 − 1

3
π2g2 +

11

45
π4g4 − 2

(
73

630
π6 + 4ζ 2

3

)
g6 + · · ·

]
, (2.21)

while at strong coupling it has the form [25, 26, 29]

�cusp(g) = 2g

[
1 − 3 ln 2

4π
g−1 − K

16π2
g−2 −

(
3K ln 2

64π3
+

27ζ3

2048π3

)
g−3 + O(g−4)

]
, (2.22)

with K being the Catalan constant. It is easy to see that relations (2.21) and (2.22) are in an
agreement with (2.20).

For arbitrary g, we can verify relation (2.20) by using the results for the cusp anomalous
dimension obtained from a numerical solution of the BES equation [25, 45]. The comparison
is shown in figure 1. We observe that the upper bound condition �cusp(g)/(2g) � 2g is indeed
satisfied for arbitrary g > 0.

7 Our analysis here goes along the same lines as in appendix A of [35].
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Figure 1. Dependence of the cusp anomalous dimension �cusp(g)/(2g) on the coupling constant.
The dashed line denotes the upper bound 2g.

We are ready to show that the analyticity conditions formulated in section 2.2 specify a
unique solution to (2.3). As was already mentioned, solutions to (2.3) are defined modulo
contribution of zero modes, γ (t) → γ (t)+γ (0)(t), with γ (0)(t) being a solution to homogenous
equations. Going through the same steps that led us to (2.17), we obtain

0 =
∫ ∞

0

dt

t

(γ
(0)
+ (t))2 + (γ

(0)
− (t))2

1 − e−t/(2g)
, (2.23)

where the zero on the left-hand side is due to absence of the inhomogeneous term. Since
the integrand is a positively definite function, we immediately deduce that γ (0)(t) = 0 and,
therefore, the solution for γ (t) is unique.

2.5. Riemann–Hilbert problem

Let us now construct the exact solution to the integral equations (2.7) and (2.3). To this end,
it is convenient to Fourier transform functions (2.2) and (2.4):

�̃(k) =
∫ ∞

−∞

dt

2π
eikt�(t), γ̃ (k) =

∫ ∞

−∞

dt

2π
eiktγ (t). (2.24)

According to (2.2) and (2.10), the function γ (t) is given by the Neumann series over the
Bessel functions. Then, we perform the Fourier transform on both sides of (2.10) and use the
well-known fact that the Fourier transform of the Bessel function Jn(t) vanishes for k2 > 1 to
deduce that the same is true for γ (t) leading to

γ̃ (k) = 0, for k2 > 1. (2.25)

10
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This implies that the Fourier integral for γ (t) only involves modes with −1 � k � 1 and,
therefore, the function γ (t) behaves at large (complex) t as

γ (t) ∼ e|t |, for |t | → ∞. (2.26)

Let us now examine the function �̃(k). We find from (2.24) and (2.13) that �̃(k) admits the
following representation:

�̃(k) =
∫ ∞

−∞

dt

2π
eikt

sinh
(

t
4g

+ iπ
4

)
sinh

(
t

4g

)
sin

(
π
4

)γ (t). (2.27)

Here, the integrand has poles along the imaginary axis at t = 4π ign (with n = ±1,±2, . . .)8.
It is suggestive to evaluate the integral (2.27) by deforming the integration contour to

infinity and by picking up residues at the poles. However, taking into account relation (2.26),
we find that the contribution to (2.27) at infinity can be neglected for k2 > 1 only. In this case,
closing the integration contour into the upper (or lower) half-plane for k > 1 (or k < −1) we
find

�̃(k)
k2>1= θ(k − 1)

∑
n�1

c+(n, g) e−4πng(k−1) + θ(−k − 1)
∑
n�1

c−(n, g) e−4πng(−k−1). (2.28)

Here, the notation was introduced for k-independent expansion coefficients:

c±(n, g) = ∓4gγ (±4π ign) e−4πng, (2.29)

where the factor e−4πng is inserted to compensate the exponential growth of γ (±4π ign) ∼
e4πng at large n (see equation (2.26)). For k2 � 1, we are not allowed to neglect the contribution
to (2.27) at infinity and relation (2.28) does no longer hold. As we will see in a moment, for
k2 � 1 the function �̃(k) can be found from (2.7).

Comparing relations (2.25) and (2.28), we conclude that, in distinction with γ̃ (k), the
function �̃(k) does not vanish for k2 > 1. Moreover, each term on the right-hand side
of (2.28) is exponentially small at strong coupling and the function scales at large k as
�̃(k) ∼ e−4πg(|k|−1). This implies that nonzero values of �̃(k) for k2 > 1 are of nonperturbative
origin. Indeed, in a perturbative approach of [25], the function �(t) is given by the Bessel
function series analogous to (2.10) and, similar to (2.25), the function �̃(k) vanishes for k2 > 1
to any order in 1/g expansion.

We note that the sum on the right-hand side of (2.28) runs over poles of the function �(it)
specified in (2.14). We recall that in the toy model (2.16), �(toy)(it) and γ (toy)(it) are entire
functions of t. At large t they have the same asymptotic behavior as the Bessel functions,
�(toy)(it) ∼ γ (toy)(it) ∼ e±it . Performing their Fourier transformation (2.24), we find

γ̃ (toy)(k) = �̃(toy)(k) = 0, for k2 > 1, (2.30)

in a close analogy with (2.25). Comparison with (2.28) shows that the coefficients (2.29)
vanish in the toy model for arbitrary n and g:

c
(toy)
+ (n, g) = c

(toy)
− (n, g) = 0. (2.31)

Relation (2.28) defines the function �̃(k) for k2 > 1 but it involves the coefficients
c±(n, g) that need to be determined. In addition, we have to construct the same function for
k2 � 1. To achieve both goals, let us return to the integral equations (2.6) and replace �±(t)

by Fourier integrals (see equations (2.24) and (2.4)):

�+(t) =
∫ ∞

−∞
dk cos(kt)�̃(k),

(2.32)

�−(t) = −
∫ ∞

−∞
dk sin(kt)�̃(k).

8 We recall that γ (t) = O(t) and, therefore, the integrand is regular at t = 0.
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In this way, we obtain from (2.6) the following remarkably simple integral equation for �̃(k):

−
∫ ∞

−∞

dk�̃(k)

k − u
+ π�̃(u) = −2, (−1 � u � 1), (2.33)

where the integral is defined using the principal value prescription. This relation is equivalent
to the functional equation obtained in [24] (see equation (55) there). Let us split the integral
in (2.33) into k2 � 1 and k2 > 1 and rewrite (2.33) in the form of a singular integral equation
for the function �̃(k) on the interval −1 � k � 1:

�̃(u) +
1

π
−
∫ 1

−1

dk�̃(k)

k − u
= φ(u), (−1 � u � 1), (2.34)

where the inhomogeneous term is given by

φ(u) = − 1

π

(
2 +

∫ −1

−∞

dk�̃(k)

k − u
+

∫ ∞

1

dk�̃(k)

k − u

)
. (2.35)

Since integration in (2.35) goes over k2 > 1, the function �̃(k) can be replaced on the
right-hand side of (2.35) by its expression (2.28) in terms of the coefficients c±(n, g).

The integral equation (2.34) can be solved by standard methods [46]. A general solution
for �̃(k) reads as (for −1 � k � 1)

�̃(k) = 1

2
φ(k) − 1

2π

(
1 + k

1 − k

)1/4

−
∫ 1

−1

duφ(u)

u − k

(
1 − u

1 + u

)1/4

−
√

2

π

(
1 + k

1 − k

)1/4
c

1 + k
, (2.36)

where the last term describes the zero mode contribution with c being an arbitrary function of
the coupling. We replace φ(u) by its expression (2.35), interchange the order of integration
and find after some algebra

�̃(k)
k2�1= −

√
2

π

(
1 + k

1 − k

)1/4
[

1 +
c

1 + k
+

1

2

∫ ∞

−∞

dp�̃(p)

p − k

(
p − 1

p + 1

)1/4

θ(p2 − 1)

]
. (2.37)

Note that the integral on the right-hand side of (2.37) goes along the real axis except the
interval [−1, 1] and, therefore, �̃(p) can be replaced by its expression (2.28).

Being combined together, relations (2.28) and (2.37) define the function �̃(k) for
−∞ < k < ∞ in terms of a (infinite) set of yet unknown coefficients c±(n, g) and c(g).
To fix these coefficients, we will first perform the Fourier transform of �̃(k) to obtain the
function �(t) and, then, require that �(t) should have correct analytical properties (2.14).

2.6. General solution

We are now ready to write down a general expression for the function �(t). According to
(2.24), it is related to �̃(k) through the inverse Fourier transformation

�(t) =
∫ 1

−1
dk e−ikt �̃(k) +

∫ −1

−∞
dk e−ikt �̃(k) +

∫ ∞

1
dk e−ikt �̃(k), (2.38)

where we split the integral into three terms since �̃(k) has a different form for k < −1,−1 �
k � 1 and k > 1. Then, we use the expressions obtained for �̃(k), equations (2.28) and (2.37),
to find after some algebra the following remarkable relation (see appendix B for details):

�(it) = f0(t)V0(t) + f1(t)V1(t). (2.39)

12
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Here, the notation was introduced for

f0(t) = −1 +
∑
n�1

t

[
c+(n, g)

U+
1 (4πng)

4πng − t
+ c−(n, g)

U−
1 (4πng)

4πng + t

]
,

(2.40)

f1(t) = −c(g) +
∑
n�1

4πng

[
c+(n, g)

U+
0 (4πng)

4πng − t
+ c−(n, g)

U−
0 (4πng)

4πng + t

]
.

Also, Vn and U±
n (with n = 0, 1) stand for integrals

Vn(x) =
√

2

π

∫ 1

−1
du(1 + u)1/4−n(1 − u)−1/4 eux,

(2.41)

U±
n (x) = 1

2

∫ ∞

1
du(u ± 1)−1/4(u ∓ 1)1/4−n e−(u−1)x,

which can be expressed in terms of the Whittaker functions of first and second kinds [47] (see
appendix D). We would like to emphasize that solution (2.39) is exact for arbitrary coupling
g > 0 and that the only undetermined ingredients in (2.39) are the expansion coefficients
c±(n, g) and c(g).

In the special case of the toy model, equation (2.31), the expansion coefficients vanish,
c
(toy)
± (n, g) = 0, and relation (2.40) takes a simple form

f
(toy)

0 (t) = −1, f
(toy)

1 (t) = −c(toy)(g). (2.42)

Substituting these expressions into (2.39), we obtain a general solution to the integral equation
(2.7) in the toy model:

�(toy)(it) = −V0(t) − c(toy)(g)V1(t). (2.43)

It involves an arbitrary g-dependent constant c(toy) which will be determined in section 2.8.

2.7. Quantization conditions

Relation (2.39) defines a general solution to the integral equation (2.7). It still depends on the
coefficients c±(n, g) and c(g) that need to be determined. We recall that �(it) should have
poles and zeros specified in (2.14).

Let us first examine poles on the right-hand side of (2.39). It follows from (2.41) that
V0(t) and V1(t) are entire functions of t and, therefore, poles can only come from the functions
f0(t) and f1(t). Indeed, the sums entering (2.40) produce an infinite sequence of poles located
at t = ±4πn (with n � 1) and, as a result, solution (2.39) has a correct pole structure (2.14).
Let us now require that �(it) should vanish for t = tzero specified in (2.14). This leads to an
infinite set of relations

�
(
4π ig

(
� − 1

4

)) = 0, � ∈ Z. (2.44)

Replacing �(it) by its expression (2.39), we rewrite these relations in an equivalent form

f0(t�)V0(t�) + f1(t�)V1(t�) = 0, t� = 4πg
(
� − 1

4

)
. (2.45)

Relations (2.44) and (2.45) provide the quantization conditions for the coefficients c(g) and
c±(n, g), respectively, that we will analyze in section 3.

Let us substitute (2.39) into expression (2.5) for the cusp anomalous dimension. The
result involves the functions Vn(t) and fn(t) (with n = 1, 2) evaluated at t = 0. It is easy
to see from (2.41) that V0(0) = 1 and V1(0) = 2. In addition, we obtain from (2.40) that
f0(0) = −1 for arbitrary coupling leading to

�cusp(g) = 2g[1 − 2f1(0)]. (2.46)

13



J. Phys. A: Math. Theor. 42 (2009) 254005 B Basso and G P Korchemsky

Replacing f1(0) by its expression (2.40), we find the following relation for the cusp anomalous
dimension in terms of the coefficients c and c±:

�cusp(g) = 2g

⎧⎨⎩1 + 2c(g) − 2
∑
n�1

[
c−(n, g)U−

0 (4πng) + c+(n, g)U+
0 (4πng)

]⎫⎬⎭ . (2.47)

We would like to stress that relations (2.46) and (2.47) are exact and hold for arbitrary coupling
g. This implies that, at weak coupling, it should reproduce the known expansion of �cusp(g)

in positive integer powers of g2 [20]. Similarly, at strong coupling, it should reproduce the
known 1/g expansion [25, 26] and, most importantly, describe nonperturbative, exponentially
suppressed corrections to �cusp(g).

2.8. Cusp anomalous dimension in the toy model

As before, the situation simplifies for the toy model (2.43). In this case, we have only one
quantization condition �(toy)(−π ig) = 0 which follows from (2.16). Together with (2.43), it
allows us to fix the coefficient c(toy)(g) as

c(toy)(g) = −V0(−πg)

V1(−πg)
. (2.48)

Then, we substitute relations (2.48) and (2.31) into (2.47) and obtain

�(toy)
cusp (g) = 2g[1 + 2c(toy)(g)] = 2g

[
1 − 2

V0(−πg)

V1(−πg)

]
. (2.49)

Replacing V0(−πg) and V1(−πg) by their expressions in terms of the Whittaker function of
the first kind (see equation (D.2)), we find the following remarkable relation:

�(toy)
cusp (g) = 2g

[
1 − (2πg)−1/2 M1/4,1/2(2πg)

M−1/4,0(2πg)

]
, (2.50)

which defines the cusp anomalous dimension in the toy model for arbitrary coupling g > 0.
Using (2.50), it is straightforward to compute �

(toy)
cusp (g) for arbitrary positive g. By

construction, �
(toy)
cusp (g) should be different from �cusp(g). Nevertheless, evaluating (2.50) for

0 � g � 3, we found that the numerical values of �
(toy)
cusp (g) are very close to the exact values

of the cusp anomalous dimension shown by the solid line in figure 1. Also, as we will show
in a moment, the two functions have similar properties at strong coupling. To compare these
functions, it is instructive to examine the asymptotic behavior of �

(toy)
cusp (g) at weak and strong

couplings.

2.8.1. Weak coupling. At weak coupling, we find from (2.50)

�(toy)
cusp (g) = 3

2
πg2 − 1

2
π2g3 − 1

64
π3g4 +

5

64
π4g5 − 11

512
π5g6 − 3

512
π6g7 + O(g8). (2.51)

Comparison with (2.21) shows that this expansion is quite different from the weak coupling
expansion of the cusp anomalous dimension. In distinction with �cusp(g), the expansion in
(2.51) runs in both even and odd powers of the coupling. In addition, the coefficient in front
of gn on the right-hand side of (2.51) has transcendentality (n− 1) while for �cusp(g) it equals
(n − 2) (with n taking even values only).

Despite this and similar to the weak coupling expansion of the cusp anomalous dimension
[19], the series (2.51) has a finite radius of convergence |g0| = 0.796. It is determined by the
position of the zero of the Whittaker function closest to the origin, M−1/4,0(2πg0) = 0 for
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g0 = −0.297 ± i0.739. Moreover, numerical analysis indicates that �
(toy)
cusp (g) has an infinite

number of poles in the complex g-plane. The poles are located on the left-half side of the
complex plane, Reg < 0, symmetrically with respect to the real axis, and they approach
progressively the imaginary axis as one goes away from the origin.

2.8.2. Strong coupling. At strong coupling, we can replace the Whittaker functions in (2.50)
by their asymptotic expansion for g � 1. It is convenient however to apply (2.49) and
replace the functions V0(−πg) and V1(−πg) by their expressions given in (D.14) and (D.16),
respectively. In particular, we have (see equation (D.14))

V0(−πg) = e1/(2α) α5/4

�
(

3
4

)[
F

(
1

4
,

5

4
|α + i0

)
+ �2F

(
−1

4
,

3

4
| − α

)]
, α = 1/(2πg),

(2.52)

where the parameter �2 is defined as

�2 = σα−1/2 e−1/α
�

(
3
4

)
�

(
5
4

) , σ = e−3iπ/4. (2.53)

Here, F(a, b| − α) is expressed in terms of the confluent hypergeometric function of the
second kind (see equations (D.12) and (D.7) in appendix D and equation (2.56)) [47]:

F

(
1

4
,

5

4
| − α

)
= α−5/4U+

0 (1/(2α))

/
�

(
5

4

)
,

(2.54)

F

(
−1

4
,

3

4
| − α

)
= α−3/4U−

0 (1/(2α))

/
�

(
3

4

)
.

The function F(a, b| − α) defined in this way is an analytical function of α with a cut along
the negative semi-axis.

For positive α = 1/(2πg), the function F
(− 1

4 , 3
4 | − α

)
entering (2.52) is defined away

from the cut and its large g expansion is given by the Borel-summable asymptotic series (for
a = − 1

4 and b = 3
4 ):

F(a, b| − α) =
∑
k�0

(−α)k

k!

�(a + k)�(b + k)

�(a)�(b)
= 1 − αab + O(α2), (2.55)

with the expansion coefficients growing factorially to higher orders in α. This series can
be immediately resummed by means of the Borel resummation method. Namely, replacing
�(a + k) by its integral representation and performing the sum over k we find for Reα > 0

F(a, b| − α) = α−a

�(a)

∫ ∞

0
dssa−1(1 + s)−b e−s/α, (2.56)

in agreement with (2.54) and (2.41).
Relation (2.55) holds in fact for arbitrary complex α and the functions F(a, b|α ± i0),

defined for α > 0 above and below the cut, respectively, are given by the same asymptotic
expansion (2.55) with α replaced by −α. The important difference is that now the series
(2.55) is no longer Borel summable. Indeed, if one attempted to resum this series using the
Borel summation method, one would immediately find a branch point singularity along the
integration contour at s = 1:

F(a, b|α ± i0) = α−a

�(a)

∫ ∞

0
dssa−1(1 − s ∓ i0)−b e−s/α. (2.57)
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The ambiguity related to the choice of the prescription to integrate over the singularity is known
as Borel ambiguity. In particular, deforming the s-integration contour above or below the cut,
one obtains two different functions F(a, b|α ± i0). They define analytical continuation of the
same function F(a, b| − α) from Re α > 0 to the upper and lower edges of the cut running
along the negative semi-axis. Its discontinuity across the cut, F(a, b|α + i0)−F(a, b|, α − i0),
is exponentially suppressed at small α > 0 and is proportional to the nonperturbative scale �2

(see equation (D.17)). This property is perfectly consistent with the fact that function (2.52)
is an entire function of α. Indeed, it takes the same form if one used α − i0 prescription in the
first term in the right-hand side of (2.52) and replaced σ in (2.53) by its complex conjugated
value.

We can now elucidate the reason for decomposing the entire V0-function in (2.52) into
the sum of two F-functions. In spite of the fact that the analytical properties of the former
function are simpler compared to the latter functions, its asymptotic behavior at large g is
more complicated. Indeed, the F-functions admit asymptotic expansions in the whole complex
g-plane and they can be unambiguously defined through the Borel resummation once their
analytical properties are specified (we recall that the function F(a, b|α) has a cut along the
positive semi-axis). In distinction with this, the entire function V0(−πg) admits different
asymptotic behavior for positive and negative values of g in virtue of the Stokes phenomenon.
Not only does it restrict the domain of validity of each asymptotic expansion, but it also forces
us to keep track of both perturbative and nonperturbative contributions in the transition region
from positive to negative g, including the transition from the strong to weak coupling.

We are now in position to discuss the strong coupling expansion of the cusp anomalous
dimension in the toy model, including into our consideration both perturbative and
nonperturbative contributions. Substituting (2.52) and a similar relation for V1(−πg) (see
equation (D.16)) into (2.49), we find (for α+ ≡ α + i0 and α = 1/(2πg))

�(toy)
cusp (g)/(2g) = 1 − α

F
(

1
4 , 5

4 |α+
)

+ �2F
(− 1

4 , 3
4 | − α

)
F

(
1
4 , 1

4 |α+
)

+ 1
4�2αF

(
3
4 , 3

4 | − α
) . (2.58)

Since the parameter �2 is exponentially suppressed at strong coupling, equation (2.53), and, at
the same time, the F-functions are all of the same order, it makes sense to expand the right-hand
side of (2.58) in powers of �2 and, then, study separately each coefficient function. In this
way, we identify the leading, �2 independent term as perturbative contribution to �

(toy)
cusp (g)

and the O(�2) term as the leading nonperturbative correction. More precisely, expanding the
right-hand side of (2.58) in powers of �2, we obtain

�(toy)
cusp (g)/(2g) = C0(α) − α�2C2(α) + 1

4α2�4C4(α) + O(�6). (2.59)

Here, the expansion runs in even powers of � and the coefficient functions Ck(α) are given
by algebraic combinations of F-functions:

C0 = 1 − α
F

(
1
4 , 5

4 |α+
)

F
(

1
4 , 1

4 |α+
) , C2 = 1[

F
(

1
4 , 1

4 |α+
)]2 , C4 = F

(
3
4 , 3

4 | − α
)[

F
(

1
4 , 1

4 |α+
)]3 , (2.60)

where we applied (D.9) and (D.12) to simplify the last two relations. Since the coefficient
functions are expressed in terms of the functions F(a, b|α+) and F(a, b| − α) having the cut
along the positive and negative semi-axes, respectively, Ck(α) are analytical functions of α in
the upper-half plane.

Let us now examine the strong coupling expansion of the coefficient functions (2.60).
Replacing F-functions in (2.60) by their asymptotic series representation (2.55), we get
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C0 = 1 − α − 1

4
α2 − 3

8
α3 − 61

64
α4 − 433

128
α5 + O(α6),

C2 = 1 − 1

8
α − 11

128
α2 − 151

1024
α3 − 13085

32768
α4 + O(α5), (2.61)

C4 = 1 − 3

4
α − 27

32
α2 − 317

128
α3 + O(α4).

Not surprisingly, these expressions inherit the properties of the F-functions—the series
(2.61) are asymptotic and non-Borel summable. If one simply substituted relations
(2.61) into the right-hand side of (2.59), one would then worry about the meaning of
nonperturbative O(�2) corrections to (2.59) given the fact that the strong coupling expansion
of perturbative contribution C0(α) suffers from Borel ambiguity. We recall that the appearance
of exponentially suppressed corrections to �

(toy)
cusp (g) is ultimately related to the Stokes

phenomenon for the function V0(−πg) (equation (2.52)). As was already mentioned, this does
not happen for the F-function and, as a consequence, its asymptotic expansion, supplemented
with the additional analyticity conditions, allows us to reconstruct the F-function through the
Borel transformation (equations (2.56) and (2.57)). Since the coefficient functions (2.60) are
expressed in terms of the F-functions, we may expect that the same should be true for the
C-functions. Indeed, it follows from the unicity condition of asymptotic expansion [27] that
the functions C0(α), C2(α), C4(α), . . . are uniquely determined by their series representations
(2.61) as soon as the latter are understood as asymptotic expansions for the functions analytical
in the upper-half plane Im α � 0. This implies that the exact expressions for functions
(2.60) can be unambiguously constructed by means of the Borel resummation but the explicit
construction remains beyond the scope of the present study.

Since expression (2.58) is exact for arbitrary coupling g, we may now address the question
formulated in section 1: how does the transition from the strong to the weak coupling regime
occur? We recall that, in the toy model, �

(toy)
cusp (g)/(2g) is given for g � 1 and g � 1

by relations (2.51) and (2.59), respectively. Let us choose some sufficiently small value
of the coupling constant, say g = 1/4, and compute �

(toy)
cusp (g)/(2g) using three different

representations. First, we substitute g = 0.25 into (2.58) and find the exact value as 0.4424(3).
Then, we use the weak coupling expansion (2.51) and obtain a close value 0.4420(2). Finally,
we use the strong coupling expansion (2.59) and evaluate the first few terms on the right-hand
side of (2.59) for g = 0.25 to get

Equation(2.59) = (0.2902 − 0.1434i) + (0.1517 + 0.1345i)

+ (0.0008 + 0.0086i) − (0.0002 − 0.0003i) + · · · = 0.4425 + · · · . (2.62)

Here the four expressions inside the round brackets correspond to contributions proportional
to �0,�2,�4 and �6, respectively, with �2(g = 0.25) = 0.3522 × e−3iπ/4 being the
nonperturbative scale (2.53).

We observe that each term in (2.62) takes complex values and their sum is remarkably
close to the exact value. In addition, the leading O(�2) nonperturbative correction (the second
term) is comparable with the perturbative correction (the first term). Moreover, the former
term starts to dominate over the latter one as we go to smaller values of the coupling constant.
Thus, the transition from the strong to weak coupling regime is driven by nonperturbative
corrections parameterized by the scale �2. Moreover, the numerical analysis indicates that
the expansion of �

(toy)
cusp (g) in powers of �2 is convergent for Reg > 0.

2.8.3. From toy model to the exact solution. Relation (2.59) is remarkably similar to
the expected strong coupling expansion of the cusp anomalous dimension (1.2) with the
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function C0(α) providing perturbative contribution and �2 defining the leading nonperturbative
contribution. Let us compare C0(α) with the known perturbative expansion (2.22) of �cusp(g).
In terms of the coupling α = 1/(2πg), the first few terms of this expansion look as

�cusp(g)/(2g) = 1 − 3 ln 2

2
α − K

4
α2 −

(
3K ln 2

8
+

27ζ3

256

)
α3 + . . . , (2.63)

where the ellipses denote both higher order corrections in α and nonperturbative corrections in
�2. Comparing (2.63) and the first term, C0(α), on the right-hand side of (2.59), we observe
that both expressions approach the same value 1 as α → 0.

As was already mentioned, the expansion coefficients of the two series have different
transcendentality—they are rational for the toy model (equation (2.61)) and have maximal
transcendentality for the cusp anomalous dimension (equation (2.63)). Note that the two series
would coincide if one formally replaced the transcendental numbers in (2.63) by appropriate
rational constants. In particular, replacing

3 ln 2

2
→ 1,

K

2
→ 1

2
,

9ζ3

32
→ 1

3
, . . . , (2.64)

one obtains from (2.63) the first few terms of perturbative expansion (2.61) of the function C0

in the toy model. This rule can be generalized to all loops as follows. Introducing an auxiliary
parameter τ , we define the generating function for the transcendental numbers in (2.64) and
rewrite (2.64) as

exp

[
3 ln 2

2
τ − K

2
τ 2 +

9ζ3

32
τ 3 + . . .

]
→ exp

[
τ − τ 2

2
+

τ 3

3
+ . . .

]
. (2.65)

Going to higher loops, we have to add higher order terms in τ to both exponents. On the
right-hand side, these terms are resummed into exp(ln(1 + τ)) = 1 + τ , while on the left-hand
side, they produce the ratio of Euler gamma functions leading to

�
(

1
4

)
�

(
1 + τ

4

)
�

(
3
4 − τ

4

)
�

(
3
4

)
�

(
1 − τ

4

)
�

(
1
4 + τ

4

) → (1 + τ). (2.66)

Taking logarithms on both sides of this relation and subsequently expanding them in powers
of τ , we obtain the substitution rules which generalize (2.64) to the complete family of
transcendental numbers entering into the strong coupling expansion (2.63). At this point,
relation (2.66) can be thought of as an empirical rule, which allows us to map the strong
coupling expansion of the cusp anomalous dimension (2.63) into that in the toy model (equation
(2.61)). We will clarify its origin in section 4.2.

In spite of the fact that the numbers entering both sides of (2.64) have different
transcendentality, we may compare their numerical values. Taking into account that
3 ln 2/2 = 1.0397(2), K/2 = 0.4579(8) and 9ζ3/32 = 0.3380(7), we observe that relation
(2.64) defines a meaningful approximation to the transcendental numbers. Moreover,
examining the coefficients in front of τn on both sides of (2.65) at large n, we find that
the accuracy of approximation increases as n → ∞. This is in agreement with the observation
made in the beginning of section 2.8: the cusp anomalous dimension in the toy model �(toy)

cusp (g)

is close numerically to the exact expression �cusp(g). In addition, the same property suggests

that the coefficients in the strong coupling expansion of �
(toy)
cusp (g) and �cusp(g) should have the

same large order behavior. It was found in [25] that the expansion coefficients on the right-
hand side of (2.63) grow at higher orders as �cusp(g) ∼ ∑

k �
(
k + 1

2

)
αk . It is straightforward

to verify using (2.55) and (2.60) that the expansion coefficients of C0(α) in the toy model have
the same behavior. This suggests that nonperturbative corrections to �cusp(g) and �

(toy)
cusp (g)
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are parameterized by the same scale �2 defined in (2.53). Indeed, we will show this in the
following section by explicit calculation.

We demonstrated in this section that nonperturbative corrections in the toy model follow
unambiguously from the exact solution (2.50). In the following section, we will extend
analysis to the cusp anomalous dimension and work out the strong coupling expansion of
�cusp(g)/(2g) analogous to (2.59).

3. Solving the quantization conditions

Let us now solve the quantization conditions (2.45) for the cusp anomalous dimension.
Relation (2.45) involves two sets of functions. The functions V0(t) and V1(t) are given by the
Whittaker function of the first kind (see equation (D.2)). At the same time, the functions f0(t)

and f1(t) are defined in (2.40) and they depend on the (infinite) set of expansion coefficients
c(g) and c±(n, g). Having determined these coefficients from the quantization conditions
(2.45), we can then compute the cusp anomalous dimension for arbitrary coupling with the
help of (2.47).

We expect that at strong coupling, the resulting expression for �cusp(g) will have form
(1.2). Examining (2.47), we observe that the dependence on the coupling resides both
in the expansion coefficients and in the functions U±

0 (4πg). The latter are given by the
Whittaker functions of the second kind (see equation (D.7)) and, as such, they are given by
Borel-summable sign-alternating asymptotic series in 1/g. Therefore, nonperturbative
corrections to the cusp anomalous dimension (2.47) could only come from the coefficients
c±(n, g) and c(g).

3.1. Quantization conditions

Let us replace f0(t) and f1(t) in (2.45) by their explicit expressions (2.40) and rewrite the
quantization conditions (2.45) as

V0(4πgx�) + c(g)V1(4πgx�) =
∑
n�1

[c+(n, g)A+(n, x�) + c−(n, g)A−(n, x�)] , (3.1)

where x� = � − 1
4 (with � = 0,±1,±2, . . .) and the notation was introduced for

A±(n, x�) = nV1(4πgx�)U
±
0 (4πng) + x�V0(4πgx�)U

±
1 (4πng)

n ∓ x�

. (3.2)

Relation (3.1) provides an infinite system of linear equations for c±(g, n) and c(g). The
coefficients in this system depend on V0,1(4πgx�) and U±

0,1(4πng) which are known functions
defined in appendix D. We would like to stress that relation (3.1) holds for arbitrary g > 0.

Let us show that the quantization conditions (3.1) lead to c(g) = 0 for arbitrary coupling.
To this end, we examine (3.1) for |x�| � 1. In this limit, for g = fixed we are allowed to
replace the functions V0(4πgx�) and V1(4πgx�) on both sides of (3.1) by their asymptotic
behavior at infinity. Making use of (D.10) and (D.12), we find for |x�| � 1

r(x�) ≡ V1(4πgx�)

V0(4πgx�)
=

{
−16πgx� + · · · , (x� < 0)

1
2 + · · · , (x� > 0),

(3.3)

where the ellipses denote terms suppressed by powers of 1/(gx�) and e−8πg|x�|. We divide
both sides of (3.1) by V1(4πgx�) and observe that for x� → −∞, the first term on the left-
hand side of (3.1) is subleading and can be safely neglected. In a similar manner, one has
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Table 1. Comparison of the numerical value of �cusp(g)/(2g) found from (3.1) and (2.47) for
nmax = 40 with the exact one [25, 45] for different values of the coupling constant g.

g 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Numer. 0.1976 0.3616 0.5843 0.7096 0.7825 0.8276 0.8576 0.8787 0.8944 0.9065
Exact 0.1939 0.3584 0.5821 0.7080 0.7813 0.8267 0.8568 0.8781 0.8938 0.9059

Table 2. Dependence of �cusp(g)/(2g) on the truncation parameter nmax for g = 1 and c(g) = 0.
The last column describes the exact result.

nmax 10 20 30 40 50 60 70 ∞
Numer. 0.8305 0.8286 0.8279 0.8276 0.8274 0.8273 0.8272 0.8267

A±(n, x�)/V1(4πgx�) = O(1/x�) for fixed n on the right-hand side of (3.1). Therefore, going
to the limit x� → −∞ on both sides of (3.1) we get

c(g) = 0 (3.4)

for arbitrary g. We verify in appendix A by explicit calculation that this relation indeed holds
at weak coupling.

Arriving at (3.4), we tacitly assumed that the sum over n in (3.1) remains finite in the limit
x� → −∞. Taking into account large n behavior of the functions U±

0 (4πng) and U±
1 (4πng)

(see equation (D.12)), we obtain that this condition translates into the following condition for
asymptotic behavior of the coefficients at large n:

c+(n, g) = o(n1/4), c−(n, g) = o(n−1/4). (3.5)

These relations also ensure that the sum in expression (2.47) for the cusp anomalous dimension
is convergent.

3.2. Numerical solution

To begin with, let us solve the infinite system of linear equations (3.1) numerically. In order
to verify (3.4), we decided to do it in two steps: we first solve (3.1) for c±(n, g) assuming
c(g) = 0 and, then, repeat the same analysis by relaxing condition (3.4) and treating c(g) as
unknown.

For c(g) = 0, we truncate the infinite sums on the right-hand side of (3.1) at some large
nmax and, then, use (3.1) for � = 1 − nmax, . . . , nmax to find numerical values of c±(n, g) with
1 � n � nmax for given coupling g. Substituting the resulting expressions for c±(n, g) into
(2.47), we compute the cusp anomalous dimension. Taking the limit nmax → ∞, we expect to
recover the exact result. Results of our analysis are summarized in two tables. Table 1 shows
the dependence of the cusp anomalous dimension on the coupling constant. Table 2 shows
the dependence of the cusp anomalous dimension on the truncation parameter nmax for fixed
coupling.

For c(g) arbitrary, we use (3.1) for � = −nmax, . . . , nmax to find numerical values of
c(g) and c±(n, g) with 1 � n � nmax for given coupling g. In this manner, we compute
�cusp(g)/(2g) and c(g) and, then, compare them with the exact expressions corresponding
to nmax → ∞. For the cusp anomalous dimension, our results for �cusp(g)/(2g) are in
remarkable agreement with the exact expression. Namely, for nmax = 40 their difference
equals 5.480×10−6 for g = 1 and it decreases down to 8.028×10−7 for g = 1.8. The reason
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Table 3. Dependence of c(g) on the truncation parameter nmax for g = 1 derived from the
quantization condition (3.1).

nmax 10 20 30 40 50 60 70 ∞
−c(g) 0.0421 0.0357 0.0323 0.0301 0.0285 0.0272 0.0262 0

why the agreement is better compared to the c(g) = 0 case (see table 1) is that c(g) takes
effectively into account a reminder of the sum on the right-hand side of (3.1) corresponding
to n > nmax. The dependence of the expression obtained for c(g) on the truncation parameter
nmax is shown in table 3. We observe that, in agreement with (3.4), c(g) vanishes as nmax → ∞.

Our numerical analysis shows that the cusp anomalous dimension (2.47) can be determined
from the quantization conditions (3.1) and (3.4) for arbitrary coupling g. In distinction with
the toy model (2.50), the resulting expression for �cusp(g) does not admit a closed form
representation. Still, as we will show in the following subsection, the quantization conditions
(3.1) can be solved analytically for g � 1 leading to asymptotic expansion for the cusp
anomalous dimension at strong coupling.

3.3. Strong coupling solution

Let us divide both sides of (3.1) by V0(4πgx�) and use (3.4) to get (for x� = � − 1
4 and � ∈ Z)

1 =
∑
n�1

c+(n, g)

[
nU+

0 (4πng)r(x�) + U+
1 (4πng)x�

n − x�

]

+
∑
n�1

c−(n, g)

[
nU−

0 (4πng)r(x�) + U−
1 (4πng)x�

n + x�

]
, (3.6)

where the function r(x�) was defined in (3.3).
Let us now examine the large g asymptotics of the coefficient functions accompanying

c±(n, g) on the right-hand side of (3.6). The functions U±
0 (4πng) and U±

1 (4πng) admit
asymptotic expansion in 1/g given by (D.12). For the function r(x�), the situation is
different. As follows from its definition, equations (3.3) and (D.10), large g expansion
of r(x�) runs in two parameters: perturbative 1/g and nonperturbative exponentially small
parameter �2 ∼ g1/2 e−2πg which we already encountered in the toy model (equation (2.53)).
Moreover, we deduce from (3.3) and (D.10) that the leading nonperturbative correction to
r(x�) scales as

δr(x�) = O(�|8�−2|),
(
x� = � − 1

4 , � ∈ Z
)
, (3.7)

so that the power of � grows with �. We observe that O(�2) corrections are only present in
r(x�) for � = 0. Therefore, as far as the leading O(�2) correction to the solutions to (3.6) are
concerned, we are allowed to neglect nonperturbative (�2-dependent) corrections to r(x�) on
the right-hand side of (3.6) for � �= 0 and retain them for � = 0 only.

Since the coefficient functions in the linear equations (3.6) admit a double series expansion
in powers of 1/g and �2, we expect that the same should be true for their solutions c±(n, g).
Let us determine the first few terms of this expansion using the following ansatz:

c±(n, g) = (8πgn)±1/4

{ [
a±(n) +

b±(n)

4πg
+ · · ·

]
+ �2

[
α±(n) +

β±(n)

4πg
+ · · ·

]
+ O(�4)

}
,

(3.8)
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where �2 is a nonperturbative parameter defined in (2.53):

�2 = σ(2πg)1/2 e−2πg
�

(
3
4

)
�

(
5
4

) , (3.9)

and the ellipses denote terms suppressed by powers of 1/g. Here, the functions
a±(n), b±(n), . . . are assumed to be g-independent. We recall that the functions c±(n, g)

have to verify relation (3.5). This implies that the functions a±(n), b±(n), . . . should vanish
as n → ∞. To determine them, we substitute (3.8) into (3.6) and compare the coefficients in
front of powers of 1/g and �2 on both sides of (3.6).

3.3.1. Perturbative corrections. Let us start with the ‘perturbative’, �2-independent part of
(3.8) and compute the functions a±(n) and b±(n).

To determine a±(n), we substitute (3.8) into (3.6), replace the functions U±
0,1(4πgn) and

r(x�) by their large g asymptotic expansion, equations (D.12) and (3.3), respectively, neglect
corrections in �2 and compare the leading O(g0) terms on both sides of (3.6). In this way,
we obtain from (3.6) the following relations for a±(n) (with x� = � − 1

4 ):

2x��

(
5

4

) ∑
n�1

a+(n)

n − x�

= 1, (� � 1)

(3.10)

−2x��

(
3

4

) ∑
n�1

a−(n)

n + x�

= 1, (� � 0).

One can verify that the solutions to this system satisfying a±(n) → 0 for n → ∞ have the
form

a+(n) = 2�
(
n + 1

4

)
�(n + 1)�2

(
1
4

) ,

(3.11)

a−(n) = �
(
n + 3

4

)
2�(n + 1)�2

(
3
4

) .

In a similar manner, we compare the subleading O(1/g) terms on both sides of (3.6) and find
that the functions b±(n) satisfy the following relations (with x� = � − 1

4 ):

2x��

(
5

4

) ∑
n�1

b+(n)

n − x�

= − 3

32x�

− 3π

64
− 15

32
ln 2, (� � 1)

(3.12)

− 2x��

(
3

4

) ∑
n�1

b−(n)

n + x�

= − 5

32x�

− 5π

64
+

9

32
ln 2, (� � 0),

where on the right-hand side we made use of (3.11). The solutions to these relations are

b+(n) = −a+(n)

(
3 ln 2

4
+

3

32n

)
, b−(n) = a−(n)

(
3 ln 2

4
+

5

32n

)
. (3.13)

It is straightforward to extend the analysis to subleading perturbative corrections to c±(n, g).
Let us substitute (3.8) into expression (2.47) for the cusp anomalous dimension. Taking

into account the identities (D.12), we find the ‘perturbative’ contribution to �cusp(g) as

�cusp(g) = 2g −
∑
n�1

(2πn)−1

[
�

(
5

4

) (
a+(n) +

b+(n)

4πg
+ · · ·

)(
1 − 5

128πgn
+ . . .

)

+ �

(
3

4

) (
a−(n) +

b−(n)

4πg
+ · · ·

)(
1 +

3

128πgn
+ · · ·

)]
+ O(�2). (3.14)
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Replacing a±(n) and b±(n) by their expressions (3.11) and (3.13), we find after some algebra

�cusp(g) = 2g

[
1 − 3 ln 2

4πg
− K

16π2g2
+ O(1/g3)

]
+ O(�2), (3.15)

where K is the Catalan number. This relation is in agreement with the known result obtained
both in N = 4 SYM theory [25, 26] and in string theory [29].

3.3.2. Nonperturbative corrections. Let us now compute the leading O(�2) nonperturbative
correction to the coefficients c±(n, g). According to (3.8), it is described by the functions
α±(n) and β±(n). To determine them from (3.6), we have to retain in r(x�) the corrections
proportional to �2. As was already explained, they only appear for � = 0. Combining together
relations (3.3), (D.10) and (D.12), we find after some algebra

δr(x�) = −δ�,0�
2
[
4πg − 5

4 + O(g−1)
]

+ O(�4). (3.16)

Let us substitute this relation into (3.6) and equate to zero the coefficient in front of �2 on the
right-hand side of (3.6). This coefficient is given by series in 1/g and, examining the first two
terms, we obtain the relations for the functions α±(n) and β±(n).

In this way, we find that the leading functions α±(n) satisfy the relations (with x� = �− 1
4 )

2x��

(
5

4

) ∑
n�1

α+(n)

n − x�

= 0, (� � 1)

(3.17)

−2x��

(
3

4

) ∑
n�1

α−(n)

n + x�

= π

2
√

2
δ�,0, (� � 0),

where on the right-hand side we applied (3.11). The solution to (3.17) satisfying α±(n) → 0
as n → ∞ reads as

α+(n) = 0,
(3.18)

α−(n) = a−(n − 1),

with a−(n) defined in (3.11). For subleading functions β±(n), we have similar relations:

2x��

(
5

4

) ∑
n�1

β+(n)

n − x�

= −1

2
, (� � 1)

(3.19)

−2x��

(
3

4

) ∑
n�1

β−(n)

n + x�

= −1

8
+

3π

16
√

2
(1 − 2 ln 2)δ�,0, (� � 0).

In a close analogy with (3.13), the solutions to these relations can be written in terms of
leading-order functions a±(n) defined in (3.11):

β+(n) = −1

2
a+(n),

(3.20)

β−(n) = a−(n − 1)

(
1

4
− 3 ln 2

4
+

1

32n

)
.

It is straightforward to extend the analysis and compute subleading O(�2) corrections to (3.8).
Relation (3.8) supplemented with (3.11), (3.13), (3.18) and (3.20) defines the solution to

the quantization condition (3.6) to leading order in both perturbative, 1/g, and nonperturbative,
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�2, expansion parameters. We are now ready to compute nonperturbative correction to the
cusp anomalous dimension (2.47). Substituting (3.8) into (2.47), we obtain

δ�cusp(g) = −�2
∑
n�1

(2πn)−1

[
�

(
5

4

) (
α+(n) +

β+(n)

4πg
+ · · ·

)(
1 − 5

128πgn
+ · · ·

)

+ �

(
3

4

) (
α−(n) +

β−(n)

4πg
+ · · ·

)(
1 +

3

128πgn
+ · · ·

)]
+ O(�4). (3.21)

We replace α±(n) and β±(n) by their explicit expressions (3.18) and (3.20), respectively,
evaluate the sums and find

δ�cusp(g) = −�2

π

[
1 +

3 − 6 ln 2

16πg
+ O(1/g2)

]
+ O(�4), (3.22)

with �2 defined in (3.9).
Relations (3.15) and (3.22) describe, correspondingly, perturbative and nonperturbative

corrections to the cusp anomalous dimension. Let us define a new nonperturbative parameter
m2

cusp whose meaning will be clear in a moment:

m2
cusp = 4

√
2

πσ
�2

[
1 +

3 − 6 ln 2

16πg
+ O(1/g2)

]
+ O(�4). (3.23)

Then, expressions (3.15) and (3.22) obtained for the cusp anomalous dimension take the form

�cusp(g) =
[

2g − 3 ln 2

2π
− K

8π2g
+ O(1/g2)

]
− σ

4
√

2
m2

cusp + O
(
m4

cusp

)
. (3.24)

We recall that another nonperturbative parameter was already introduced in section 2.1 as
defining the mass gap mO(6) in the O(6) model. We will show in the following section that the
two scales, mcusp and mO(6), coincide to any order in 1/g.

4. Mass scale

The cusp anomalous dimension controls the leading logarithmic scaling behavior of the
anomalous dimensions (1.1) in the double scaling limit L,N → ∞ and j = L/ ln N = fixed.
The subleading corrections to this behavior are described by the scaling function ε(j, g). At
strong coupling, this function coincides with the energy density of the ground state of the
bosonic O(6) model (1.3). The mass gap in this model mO(6) is given by expression (2.9)
which involves the functions �±(t) constructed in section 2.

4.1. General expression

Let us apply (2.9) and compute the mass gap mO(6) at strong coupling. At large g, the integral
in (2.9) receives a dominant contribution from t ∼ g. In order to evaluate (2.9), it is convenient
to change the integration variable as t → 4πgit :

mO(6) = 8
√

2

π2
e−πg − 8g

π
e−πgRe

[∫ −i∞

0
dt e−4πgt−iπ/4 �(4πgit)

t + 1
4

]
, (4.1)

where the integration goes along the imaginary axis. We find from (2.39) that �(4πgit) takes
the form

�(4πgit) = f0(4πgt)V0(4πgt) + f1(4πgt)V1(4πgt), (4.2)
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where V0,1(4πgt) are given by the Whittaker functions of the first kind, equation (D.2), and
f0,1(4πgt) admit the following representation (see equations (2.40) and (3.4)):

f0(4πgt) =
∑
n�1

t

[
c+(n, g)

U+
1 (4πng)

n − t
+ c−(n, g)

U−
1 (4πng)

n + t

]
− 1,

(4.3)

f1(4πgt) =
∑
n�1

n

[
c+(n, g)

U+
0 (4πng)

n − t
+ c−(n, g)

U−
0 (4πng)

n + t

]
.

Here, the functions U±
0,1(4πng) are expressed in terms of the Whittaker functions of the first

kind, equation (D.7), and the expansion coefficients c±(n, g) are solutions to the quantization
conditions (2.45).

Replacing �(4πgit) in (4.1) by its expression (4.2), we evaluate the t-integral and find
after some algebra (see appendix E for details) [38]

mO(6) = −16
√

2

π
ge−πg[f0(−πg)U−

0 (πg) + f1(−πg)U−
1 (πg)]. (4.4)

This relation can be further simplified with the help of the quantization conditions (2.45). For
� = 0, we obtain from (2.45) that f0(−πg)V0(−πg) + f1(−πg)V1(−πg) = 0. Together
with the Wronskian relation for the Whittaker functions (D.8), this leads to the following
remarkable relation for the mass gap:

mO(6) = 16
√

2

π2

f1(−πg)

V0(−πg)
. (4.5)

It is instructive to compare this relation with a similar relation (2.46) for the cusp anomalous
dimension. We observe that both quantities involve the same function f1(4πgt) but evaluated
for different values of its argument, that is, t = −1/4 for the mass gap and t = 0 for the
cusp anomalous dimension. As a consequence, there are no reasons to expect that the two
functions, m(g) and �cusp(g), could be related to each other in a simple way. Nevertheless,
we will demonstrate in this subsection that m2

O(6) determines the leading nonperturbative
correction to �cusp(g) at strong coupling.

4.2. Strong coupling expansion

Let us now determine the strong coupling expansion of functions (4.3). We replace coefficients
c±(n, g) in (4.3) by their expression (3.8) and take into account the results obtained for the
functions a±, b±, . . . (equations (3.11), (3.13), (3.18) and (3.20)). In addition, we replace in
(4.3) the functions U±

0,1(4πng) by their strong coupling expansion (D.12). We recall that the
coefficients c±(n, g) admit the double series expansion (3.8) in powers of 1/g and �2 ∼ e−2πg

(equation (3.9)). As a consequence, the functions f0(4πgt) and f1(4πgt) have the form

fn(4πgt) = f (PT)

n (4πgt) + δfn(4πgt), (n = 0, 1), (4.6)

where f (PT)

n is given by asymptotic (non-Borel summable) series in 1/g and δfn takes into
account the nonperturbative corrections in �2.

Evaluating sums on the right-hand side of (4.3), we find that f0(4πgt) and f1(4πgt) can
be expressed in terms of two sums involving functions a±(n) defined in (3.11):

2�

(
5

4

) ∑
n�1

a+(n)

t − n
= 1

t

[
�

(
3
4

)
�(1 − t)

�
(

3
4 − t

) − 1

]
,

(4.7)

2�

(
3

4

) ∑
n�1

a−(n)

t + n
= 1

t

[
�

(
1
4

)
�(1 + t)

�
(

1
4 + t

) − 1

]
.
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Going through calculation of (4.3), we find after some algebra that perturbative corrections
to f0(4πgt) and f1(4πgt) are given by linear combinations of the ratios of Euler gamma
functions:

f
(PT)

0 (4πgt) = −�
(

3
4

)
�(1 − t)

�
(

3
4 − t

)
+

1

4πg

[(
3 ln 2

4
+

1

8t

)
�

(
3
4

)
�(1 − t)

�
(

3
4 − t

) − �
(

1
4

)
�(1 + t)

8t�
(

1
4 + t

) ]
+ O(g−2),

f
(PT)

1 (4πgt) = 1

4πg

[
�

(
1
4

)
�(1 + t)

4t�
(

1
4 + t

) − �
(

3
4

)
�(1 − t)

4t�
(

3
4 − t

) ]

− 1

(4πg)2

[
�

(
1
4

)
�(1 + t)

4t�
(

1
4 + t

) (
1

4t
− 3 ln 2

4

)

− �
(

3
4

)
�(1 − t)

4t�
(

3
4 − t

) (
1

4t
+

3 ln 2

4

)]
+ O(g−3). (4.8)

Note that f1(t) is suppressed by factor 1/(4πg) compared to f0(t). In a similar manner, we
compute nonperturbative corrections to (4.6):

δf0(4πgt) = �2

{
1

4πg

[
�

(
3
4

)
�(1 − t)

2�
(

3
4 − t

) − �
(

5
4

)
�(1 + t)

2�
(

5
4 + t

) ]
+ O(g−2)

}
+ · · · ,

δf1(4πgt) = �2

{
1

4πg

�
(

5
4

)
�(1 + t)

�
(

5
4 + t

) +
1

(4πg)2

[
�

(
3
4

)
�(1 − t)

8t�
(

3
4 − t

)
− �

(
5
4

)
�(1 + t)

�
(

5
4 + t

) (
1

8t
+

3

4
ln 2 − 1

4

)]
+ O(g−3)

}
+ · · · , (4.9)

where the ellipses denote O(�4) terms.
Substituting (4.8) and (4.9) into (4.2), we obtain the strong coupling expansion of the

function �(4π igt). To verify the expressions obtained, we apply (2.46) to calculate the cusp
anomalous dimension:

�cusp(g) = 2g − 4gf
(PT)

1 (0) − 4gδf1(0). (4.10)

Replacing f
(PT)

1 (0) and δf1(0) by their expressions, equations (4.8) and (4.9), we obtain

�cusp(g) = 2g

[
1 − 3 ln 2

4πg
− K

(4πg)2
+ · · ·

]
− �2

π

[
1 +

3 − 6 ln 2

16πg
+ · · ·

]
+ O(�4), (4.11)

in a perfect agreement with (3.15) and (3.22), respectively.
Let us obtain the strong coupling expansion of the mass gap (4.5). We replace V0(−πg)

by its asymptotic series, equations (D.14) and (D.12), and take into account (4.8) and (4.9) to
get

mO(6) =
√

2

�
(

5
4

) (2πg)1/4 e−πg

{ [
1 +

3 − 6 ln 2

32πg
+

−63 + 108 ln 2 − 108(ln 2)2 + 16K

2048(πg)2
+ · · ·

]
− �2

8πg

[
1 − 15 − 6 ln 2

32πg
+ · · ·

]
+ O(�4)

}
. (4.12)

Here, in order to determine O(1/g2) and O(�2/g2) terms inside the curly brackets, we
computed in addition the subleading O(g−3) corrections to f

(PT)

1 and δf1 in equations (4.8)
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and (4.9), respectively. The leading O(1/g) correction to mO(6) (the second term inside the
first square bracket on the right-hand side of (4.12)) is in agreement with both analytical
[35, 38] and numerical calculations [36].

We are now ready to clarify the origin of the ‘substitution rule’ (2.66) that establishes
the relation between the cusp anomalous dimension in the toy model and the exact solution.
To this end, we compare the expressions for the functions fn(4πgt) given by (4.6), (4.8) and
(4.9) with those in the toy model (equations (2.42) and (2.48))9. It is straightforward to verify
that upon the substitution (2.66) and (2.64), the two sets of functions coincide up to an overall
t-dependent factor10:

fn(4πgt)
�

(
3
4 − t

)
�

(
3
4

)
�(1 − t)

→ f (toy)
n (4πgt), (n = 0, 1). (4.13)

Since the cusp anomalous dimension (2.46) is determined by the f1-function evaluated at
t = 0, the additional factor does not affect its value.

4.3. Nonperturbative corrections to the cusp anomalous dimension

Relation (4.12) defines strong coupling corrections to the mass gap. In a close analogy
with the cusp anomalous dimension (4.11), it runs in two parameters: perturbative 1/g and
nonperturbative �2. We would like to stress that the separation of the corrections to mO(6) into
perturbative and nonperturbative ones is ambiguous since the ‘perturbative’ series inside the
square brackets on the right-hand side of (4.12) is non-Borel summable and, therefore, it suffers
from Borel ambiguity. It is only the sum of perturbative and nonperturbative corrections that
is an unambiguously defined function of the coupling constant. In distinction with the mass
scale mO(6), definition (2.53) of the nonperturbative scale �2 involves a complex parameter
σ whose value depends on the prescription employed to regularize the singularities of the
‘perturbative’ series.

To illustrate the underlying mechanism of the cancellation of Borel ambiguity inside
mO(6), let us examine the expression for the mass gap (4.5) in the toy model. As was already
explained in section 2.8, the toy model captures the main features of the exact solution at
strong coupling and, at the same time, it allows us to obtain expressions for various quantities
in a closed analytical form. The mass gap in the toy model is given by relation (4.5) with
f1(−πg) replaced with f

(toy)

1 (−πg) defined in (2.42) and (2.48). In this way, we obtain

mtoy = 16
√

2

π2

f
(toy)

1 (−πg)

V0(−πg)
= 16

√
2

π2

1

V1(−πg)
. (4.14)

Here, V1(−πg) is an entire function of the coupling constant (see equation (2.41)). Its large g

asymptotic expansion can be easily deduced from (D.16) and it involves the nonperturbative
parameter �2.

Making use of (2.52), we obtain from (4.14)

mtoy = 4

π�
(

5
4

) (2πg)1/4 e−πg

{[
1 − 1

32πg
− 23

2048(πg)2
+ · · ·

]
− �2

8πg

[
1 − 11

32πg
+ · · ·

]
+ O(�4)

}
, (4.15)

9 It worth mentioning that the functions f
(toy)

0 and f
(toy)

1 in the toy model are, in fact, t-independent.
10 Roughly speaking, this substitution simplifies the complicated structure of poles and zeros of the exact solution,
equations (4.8) and (4.9), encoded in the ratio of the gamma functions to match simple analytical properties of the
same functions in the toy model (compare (2.13) and (2.16)).
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where the ellipses denote terms with higher power of 1/g. By construction, mtoy is an
unambiguous function of the coupling constant whereas the asymptotic series inside the
square brackets are non-Borel summable. It is easy to verify that ‘perturbative’ corrections to
m2

toy are described by the asymptotic series C2(α) given by (2.61). Together with (2.59), this
allows us to identify the leading nonperturbative correction to (2.59) in the toy model as

δ�(toy)
cusp = −�2

π
C2(α) + O(�4) = − π2

32
√

2
σm2

toy + O
(
m4

toy

)
, (4.16)

with �2 given by (3.9).
Comparing relations (4.12) and (4.15), we observe that mO(6) and mtoy have the same

leading asymptotics while subleading 1/g corrections to the two scales have different
transcendentality. Namely, the perturbative coefficients in mtoy are rational numbers while for
mO(6) their transcendentality increases with order in 1/g. We recall that we already encountered
the same property for the cusp anomalous dimension (equations (2.59) and (2.63)). There,
we have observed that the two expressions (2.59) and (2.63) coincide upon the substitution
(2.64). Performing the same substitution in (4.12) we find that, remarkably enough, the two
expressions for the mass gap indeed coincide up to an overall normalization factor:

mO(6)
equation (2.64)= π

2
√

2
mtoy. (4.17)

The expressions for the cusp anomalous dimension (4.11) and for the mass scale (4.12)
can be further simplified if one redefines the coupling constant as

g′ = g − c1, c1 = 3 ln 2

4π
, (4.18)

and re-expands both quantities in 1/g′. As was observed in [25], such redefinition allows
one to eliminate ‘ln 2’ terms in perturbative expansion of the cusp anomalous dimension.
Repeating the same analysis for (4.11), we find that the same is also true for nonperturbative
corrections:

�cusp (g + c1) = 2g

[
1 − K

(4πg)2
+ · · ·

]
− �2

2
√

2π

[
1 +

3

16πg
+ · · ·

]
+ O(�4), (4.19)

with �2 defined in (3.9). In a similar manner, the expression for the mass scale (4.12) takes
the form

[mO(6)(g + c1)]
2 = 2�2

πσ

[(
1 +

3

16πg
+

16K − 54

512(πg)2
+ · · ·

)
− �2

8
√

2πg

(
1 − 3

8πg
+ · · ·

)
+ O(�4)

]
. (4.20)

Comparing relations (4.19) and (4.20), we immediately recognize that, within an accuracy
of the expressions obtained, the nonperturbative O(�2) correction to the cusp anomalous
dimension is given by m2

O(6):

δ�cusp = − σ

4
√

2
m2

O(6) + O
(
m4

O(6)

)
. (4.21)

It is worth mentioning that, upon identification of the scales (4.17), this relation coincides with
(4.16).

We will show in the following subsection that relation (4.21) holds at strong coupling to
all orders in 1/g.
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4.4. Relation between the cusp anomalous dimension and mass gap

We demonstrated that the strong coupling expansion of the cusp anomalous dimension has
form (3.24) with the leading nonperturbative correction given to the first few orders in 1/g

expansion by the mass scale of the O(6) model, m2
cusp = m2

O(6). Let us show that this relation
is in fact exact at strong coupling.

According to (4.10), the leading nonperturbative correction to the cusp anomalous
dimension is given by

δ�cusp = −4gδf1(0), (4.22)

with δf1(0) denoting the O(�2) correction to the function f1(t = 0) (equation (4.6)). We recall
that this function verifies the quantization conditions (2.45). As was explained in section 3.3,
the leading O(�2) corrections to solutions of (2.45) originate from subleading, exponentially
suppressed terms in the strong coupling expansion of the functions V0(−πg) and V1(−πg)

that we shall denote as δV0(−πg) and δV1(−πg), respectively. Using the identities (D.14)
and (D.16), we find

δV0(−πg) = σ
2
√

2

π
e−πgU−

0 (πg), δV1(−πg) = σ
2
√

2

π
e−πgU−

1 (πg), (4.23)

where the functions U−
0 (πg) and U−

1 (πg) are defined in (D.7). Then, we split the
functions f0(t) and f1(t) entering the quantization conditions (2.45) into perturbative and
nonperturbative parts according to (4.6) and compare exponentially small terms on both sides
of (2.45) to get

δf0(t�)V0(t�) + δf1(t�)V1(t�) = −m′δ�,0, (4.24)

where t� = 4πg
(
� − 1

4

)
and the notation was introduced for

m′ = f0(−πg)δV0(−πg) + f1(−πg)δV1(−πg). (4.25)

Taking into account relations (4.23) and comparing the resulting expression for m′ with (4.4),
we find that

m′ = − σ

8g
mO(6), (4.26)

with mO(6) being the mass scale (4.4).
To compute nonperturbative O(�2) correction to the cusp anomalous dimension, we have

to solve the system of relations (4.24), determine the function δf1(t) and, then, apply (4.22).
We will show in this subsection that the result reads as

δf1(0) = −
√

2

4
m′mO(6) = σ

√
2

32g
m2

O(6), (4.27)

to all orders in strong coupling expansion. Together with (4.22), this leads to the desired
expression (4.21) for leading nonperturbative correction to the cusp anomalous dimension.

To begin with, let us introduce a new function analogous to (2.39):

δ�(it) = δf0(t)V0(t) + δf1(t)V1(t). (4.28)

Here δf0(t) and δf1(t) are given by the same expressions as before, equation (2.40), with
the only difference that the coefficients c±(n, g) are replaced in (2.40) by their leading
nonperturbative correction δc±(n, g) = O(�2) and relation (3.4) is taken into account. This
implies that various relations for �(it) can be immediately translated into those for the function
δ�(it). In particular, for t = 0 we find from (2.40) that δf0(0) = 0 for arbitrary coupling,
leading to

δ�(0) = 2δf1(0). (4.29)
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In addition, we recall that, for arbitrary c±(n, g), function (2.39) satisfies the inhomogeneous
integral equation (2.7). In other words, the c±(n, g)-dependent terms in the expression for
the function �(it) are zero modes for the integral equation (2.7). Since function (4.28) is just
given by the sum of such terms, it automatically satisfies the homogenous equation∫ ∞

0
dt[eituδ�−(t) − e−ituδ�+(t)] = 0, (−1 � u � 1), (4.30)

where δ�(t) = δ�+(t) + iδ�−(t) and δ�±(−t) = ±δ�±(t).
As before, in order to construct a solution to (4.30), we have to specify additional

conditions for δ�(t). Since the substitution c±(n, g) → δc±(n, g) does not affect the analytical
properties of functions (2.40), function (4.28) shares with �(it) an infinite set of simple poles
located at the same position (2.14):

δ�(it) ∼ 1

t − 4πg�
, (� ∈ Z/0). (4.31)

In addition, we deduce from (4.24) that it also satisfies the relation (with x� = � − 1
4 )

δ�(4π igx�) = −m′δ�,0, (� ∈ Z), (4.32)

and, therefore, has an infinite number of zeros. An important difference with �(it) is that
δ�(it) does not vanish at t = −πg and its value is fixed by the parameter m′ defined in (4.26).

Keeping in mind the similarity between the functions �(it) and δ�(it), we follow (2.13)
and define a new function

δγ (it) = sin(t/4g)√
2 sin (t/4g + π/4)

δ�(it). (4.33)

As before, the poles and zeros of �̂(it) are compensated by the ratio of sinus functions.
However, in distinction with γ (it) and in virtue of δ�(−π ig) = −m′, the function δγ (it) has
a single pole at t = −πg with the residue equal to 2gm′. For t → 0, we find from (4.33) that
δγ (it) vanishes as

δγ (it) = t

4g
δ�(0) + O(t2) = t

2g
δf1(0) + O(t2), (4.34)

where in the second relation we applied (4.29). It is convenient to split the function δγ (t) into
the sum of two terms of a definite parity, δγ (t) = δγ+(t) + iδγ−(t) with δγ±(−t) = ±δγ±(t).
Then, combining together (4.30) and (4.33) we obtain that the functions δγ±(t) satisfy the
infinite system of homogenous equations (for n � 1):∫ ∞

0

dt

t
J2n−1(t)

[
δγ−(t)

1 − e−t/2g
+

δγ+(t)

et/2g − 1

]
= 0,

(4.35)∫ ∞

0

dt

t
J2n(t)

[
δγ+(t)

1 − e−t/2g
− δγ−(t)

et/2g − 1

]
= 0.

By construction, the solution to this system δγ (t) should vanish at t = 0 and have a simple
pole at t = −iπg.

As was already explained, the functions δ�±(t) satisfy the same integral equation (4.30)
as the function �±(t) up to an inhomogeneous term on the right-hand side of (2.7). Therefore,
it should not be surprising that the system (4.35) coincides with relations (2.3) after one
neglects the inhomogeneous term on the right-hand side of (2.3). As we show in appendix C,
this fact allows us to derive Wronskian-like relations between the functions δγ (t) and γ (t).
These relations turn out to be powerful enough to determine the small t asymptotics of the
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function δγ (t) at small t in terms of γ (t), or equivalently �(t). In this way, we obtain (see
appendix C for more detail)

δγ (it) = −m′t
[

2

π2g
e−πg −

√
2

π
e−πg Re

∫ ∞

0

dt ′

t ′ + iπg
ei(t ′−π/4)�(t ′)

]
+ O(t2). (4.36)

Comparing this relation with (2.9), we realize that the expression inside the square brackets is
proportional to the mass scale mO(6) leading to

δγ (it) = −m′mO(6)

t
√

2

8g
+ O(t2). (4.37)

Matching this relation to (4.34), we obtain the desired expression for δf1(0) (equation (4.27)).
Then, we substitute it into (4.22) and compute the leading nonperturbative correction to the
cusp anomalous dimension, equation (4.21), leading to

mcusp(g) = mO(6)(g). (4.38)

Thus, we demonstrated in this section that nonperturbative, exponentially small corrections to
the cusp anomalous dimensions at strong coupling are determined to all orders in 1/g by the
mass gap of the two-dimensional bosonic O(6) model embedded into the AdS5 × S5 sigma
model.

5. Conclusions

In this paper, we have studied the anomalous dimensions of Wilson operators in the SL(2)

sector of planar N = 4 SYM theory in the double scaling limit when the Lorentz spin of
the operators grows exponentially with their twist. In this limit, the asymptotic behavior of
the anomalous dimensions is determined by the cusp anomalous dimension �cusp(g) and the
scaling function ε(g, j). We found that at strong coupling, both functions receive exponentially
small corrections which are parameterized by the same nonperturbative scale. It is remarkable
that this scale appears on both sides of the AdS/CFT correspondence. In string theory, it
emerges as the mass gap of the two-dimensional bosonic O(6) sigma model which describes
the effective dynamics of massless excitations for a folded spinning string in the AdS5 × S5

sigma model [6].
The dependence of �cusp(g) and ε(g, j) on the coupling constant is governed by integral

BES/FRS equations which follow from the conjectured all-loop integrability of the dilatation
operator of the N = 4 model. At weak coupling, their solutions agree with the results
of explicit perturbative calculations. At strong coupling, a systematic expansion of the
cusp anomalous dimension in powers of 1/g was derived in [25]. In agreement with the
AdS/CFT correspondence, the first few terms of this expansion coincide with the energy of
the semiclassically quantized folded spinning strings. However, the expansion coefficients
grow factorially at higher orders and, as a consequence, the ‘perturbative’ 1/g expansion of
the cusp anomalous dimension suffers from Borel singularities which induce exponentially
small corrections to �cusp(g). To identify such nonperturbative corrections, we revisited the
BES equation and constructed the exact solution for the cusp anomalous dimension valid for
an arbitrary coupling constant.

At strong coupling, we found that the expression obtained for �cusp(g) depends on a
new scale mcusp(g) which is exponentially small as g → ∞. Nonperturbative corrections
to �cusp(g) at strong coupling run in even powers of this scale, and the coefficients of this
expansion depend on the prescription employed to regularize Borel singularities in perturbative
1/g series. It is only the sum of perturbative and nonperturbative contributions which is
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independent of the choice of the prescription. For the scaling function ε(g, j), the defining
integral FRS equation can be brought to the form of the thermodynamical Bethe ansatz
equations for the energy density of the ground state of the O(6) model. As a consequence,
nonperturbative contribution to ε(g, j) at strong coupling is described by the mass scale of
this model mO(6)(g). We have shown that the two scales coincide, mcusp(g) = mO(6)(g), and,
therefore, nonperturbative contributions to �cusp(g) and ε(g, j) are governed by the same scale
mO(6)(g).

This result agrees with the proposal by Alday–Maldacena that, in string theory, the
leading nonperturbative corrections to the cusp anomalous dimension coincide with those to
the vacuum energy density of the two-dimensional bosonic O(6) model embedded into the
AdS5 × S5 sigma model. These models have different properties: the former model has
asymptotic freedom at short distances and develops the mass gap in the infrared while the
latter model is conformal. The O(6) model only describes an effective dynamics of massless
modes of AdS5 × S5 and the mass of massive excitations μ ∼ 1 defines a ultraviolet (UV)
cutoff for this model. The coupling constants in the two models are related to each other as
ḡ2(μ) = 1/(2g). The vacuum energy density in the O(6) model and more generally in the
O(n) model is an ultraviolet-divergent quantity. It also depends on the mass scale of the model
and has the following form:

εvac = μ2ε(ḡ2) + κm2
O(n) + O

(
m4

O(n)

/
μ2). (5.1)

Here μ2 is a UV cutoff, ε(ḡ2) stands for the perturbative series in ḡ2 and the mass gap m2
O(n) is

m2
O(n) = cμ2 e

− 1
β0 ḡ2 ḡ−2β1/β

2
0 [1 + O(ḡ2)], (5.2)

where β0 and β1 are the beta-function coefficients for the O(n) model and the normalization
factor c ensures independence of mO(n) on the renormalization scheme. For n = 6, relation
(5.2) coincides with (1.3) and the expression for the vacuum energy density (5.1) should be
compared with (1.2).

The two terms on the right-hand side of (5.1) describe perturbative and nonperturbative
corrections to εvac. For n → ∞, each of them is well defined separately and can be computed
exactly [48, 49]. For n finite, including n = 6, the function ε(ḡ2) is given in a generic
renormalization scheme by a non-Borel summable series and, therefore, is not well defined.
In a close analogy with (1.2), the coefficient κ in front of m2

O(n) on the right-hand side of (5.1)
depends on the regularization of Borel singularities in perturbative series for ε(ḡ2). Note that
εvac is related to the vacuum expectation value of the trace of the tensor energy–momentum
in the two-dimensional O(n) sigma model [49]. The AdS/CFT correspondence implies that
for n = 6, the same quantity defines the nonperturbative correction to the cusp anomalous
dimension (1.2). It would be interesting to obtain its dual representation (if any) in terms of
certain operators in four-dimensional N = 4 SYM theory. Finally, one may wonder whether
it is possible to identify a restricted class of Feynman diagrams in N = 4 theory whose
resummation could produce contribution to the cusp anomalous dimension exponentially
small as g → ∞. As a relevant example, we would like to mention that exponentially
suppressed corrections were obtained in [50] from the exact resummation of ladder diagrams
in four-dimensional massless gφ3 theory.
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Appendix A. Weak coupling expansion

In this appendix, we work out the first few terms of the weak coupling expansion of the
coefficient c(g) entering (2.47) and show that they vanish in agreement with (3.4). To this
end, we will not attempt at solving the quantization conditions (2.45) at weak coupling but will
use instead the fact that the BES equation can be solved by iteration of the inhomogeneous
term.

The system of integral equation (2.3) can be easily solved at weak coupling by looking
for its solutions γ±(t) in the form of the Bessel series (2.10) and expanding the coefficients
γ2k and γ2k−1 in powers of the coupling constant. For g → 0, it follows from (2.3)
and from orthogonality conditions for the Bessel functions that γ−(t) = J1(t) + · · · and
γ+(t) = 0 + · · · with the ellipses denoting subleading terms. To determine such terms, it is
convenient to change the integration variable in (2.3) as t → tg. Then, taking into account the
relations Jk(−gt) = (−1)kJk(gt) we observe that the resulting equations are invariant under
substitution g → −g provided that the functions γ±(gt) change sign under this transformation.
Since γ±(−t) = ±γ±(t), this implies that the coefficients γ2n−1(g) and γ2n(g) entering (2.10)
have a definite parity as functions of the coupling constant

γ2n−1(−g) = γ2n−1(g), γ2n(−g) = −γ2n(g), (A.1)

and, therefore, their weak coupling expansion runs in even and odd powers of g, respectively.
Expanding both sides of (2.3) at weak coupling and comparing the coefficients in front of
powers of g, we find

γ1 = 1

2
− π2

6
g2 +

11π4

90
g4 −

(
73π6

630
+ 4ζ 2

3

)
g6 + O(g8),

γ2 = ζ3g
3 −

(
π2

3
ζ3 + 10ζ5

)
g5 +

(
8π4

45
ζ3 +

10π2

3
ζ5 + 105ζ7

)
g7 + O(g9),

γ3 = −π4

90
g4 +

37π6

1890
g6 + O(g8), γ4 = ζ5g

5 −
(

π2

3
ζ5 + 21ζ7

)
g7 + O(g9),

γ5 = − π6

945
g6 + O(g8), γ6 = ζ7g

7 + O(g9).

(A.2)

We verify with the help of (2.12) that the expression for the cusp anomalous dimension

�cusp(g) = 8g2γ1(g) = 4g2 − 4π2

3
g4 +

44π4

45
g6 −

(
292π6

315
+ 32ζ 2

3

)
g8 + O(g10) (A.3)

agrees with the known four-loop result in planar N = 4 SYM theory [20].
In our approach, the cusp anomalous dimension is given for an arbitrary value of the

coupling constant by expression (2.47) which involves the functions c(g) and c±(n, g).
According to (2.29), the latter functions are related to the functions γ (t) = γ+(t) + iγ−(t)

evaluated at t = 4π ign:

c+(n, g) = −4g e−4πgn[γ+(4π ign) + iγ−(4π ign)],
(A.4)

c−(n, g) = 4ge−4πgn[γ+(4π ign) − iγ−(4π ign)].

At strong coupling, we determined c±(n, g) by solving the quantization conditions (3.6). At
weak coupling, we can compute c±(n, g) from (A.4) by replacing γ±(t) with their Bessel
series (2.10) and making use of the expressions obtained for the expansion coefficients (A.2).
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The remaining function c(g) can be found from comparison of two different
representations for the cusp anomalous dimension (equations (2.47) and (2.12)):

c(g) = −1

2
+ 2gγ1(g) +

∑
n�1

[
c−(n, g)U−

0 (4πng) + c+(n, g)U+
0 (4πng)

]
. (A.5)

Taking into account relations (A.4) and (2.10), we find

c(g) = −1

2
+ 2gγ1(g) −

∑
k�1

(−1)k[(2k − 1)γ2k−1(g)f2k−1(g) + (2k)γ2k(g)f2k(g)], (A.6)

where the coefficients γk are given by (A.2) and the notation was introduced for the functions

fk(g) = 8g
∑
n�1

[
U+

0 (4πgn) − (−1)kU−
0 (4πgn)

]
Ik(4πgn) e−4πgn. (A.7)

Here, Ik(x) is the modified Bessel function [47] and the functions U±
0 (x) are defined in (D.7).

At weak coupling, the sum over n can be evaluated with the help of the Euler–Maclaurin
summation formula. Going through lengthy calculation, we find

f1 = 1 − 2g +
π2

3
g2 + 2ζ3g

3 − π4

6
g4 − 23ζ5g

5 +
17π6

108
g6 +

1107

4
ζ7g

7 + O(g8),

f2 = −1

2
+ 2ζ3g

3 − π4

30
g4 + O(g5), f3 = 1

2
+ O(g4),

f4 = −3

8
+ O(g5), f5 = 3

8
+ O(g6), f6 = − 5

16
+ O(g7).

(A.8)

In this way, we obtain from (A.6)

c(g) = − 1
2 + (f1 + 2g)γ1 + 2f2γ2 − 3f3γ3 − 4f4γ4 + 5f5γ5 + 6f6γ6 + · · · = O(g8). (A.9)

Thus, in agreement with (3.4), the function c(g) vanishes at weak coupling. As was shown in
section 3.1, the relation c(g) = 0 holds for arbitrary coupling.

Appendix B. Constructing general solution

By construction, the function �(t) = �+(t)+i�−(t) defined as the exact solution to the integral
equation (2.7) is given by the Fourier integral

�(t) =
∫ ∞

−∞
dke−ikt �̃(k), (B.1)

with the function �̃(k) having a different form for k2 � 1 and k2 > 1:

• For −∞ < k < −1:

�̃(k)=
∑
n�1

c−(n, g) e−4πng(−k−1), (B.2)

• For 1 < k < ∞:

�̃(k)=
∑
n�1

c+(n, g) e−4πng(k−1), (B.3)

• For −1 � k � 1:

�̃(k) = −
√

2

π

(
1 + k

1 − k

)1/4
[

1 +
c(g)

1 + k
+

1

2

(∫ −1

−∞
+

∫ ∞

1

)
dp�̃(p)

p − k

(
p − 1

p + 1

)1/4
]

, (B.4)

where �̃(p) inside the integral is replaced by (B.2) and (B.3).
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Let us split the integral in (B.1) into three terms as in (2.38) and evaluate them one after
another. Integration over k2 > 1 can be done immediately while the integral over −1 � k � 1
can be expressed in terms of special functions:

�(t) =
∑
n�1

c+(n, g)

[
e−it

4πng + it
− V+(−it, 4πng)

]

+
∑
n�1

c−(n, g)

[
eit

4πng − it
+ V−(it, 4πng)

]
− V0(−it) − c(g)V1(−it),

(B.5)

where the notation was introduced for the functions (with n = 0, 1)

V±(x, y) = 1√
2π

∫ 1

−1
dk e±xk

∫ ∞

1

dpe−y(p−1)

p − k

(
1 + k

1 − k

p − 1

p + 1

)±1/4

,

Vn(x) =
√

2

π

∫ 1

−1

dk exk

(k + 1)n

(
1 + k

1 − k

)1/4

, (B.6)

U±
n (y) = 1

2

∫ ∞

1

dp e−y(p−1)

(p ∓ 1)n

(
p + 1

p − 1

)∓1/4

.

The reason why we also introduced U±
n (y) is that the functions V±(x, y) can be further

simplified with the help of master identities (we shall return to them in a moment):

(x + y)V−(x, y) = xV0(x)U−
1 (y) + yV1(x)U−

0 (y) − e−x,
(B.7)

(x − y)V+(x, y) = xV0(x)U+
1 (y) + yV1(x)U+

0 (y) − ex.

Combining together (B.7) and (B.5), we arrive at the following expression for the function
�(it):

�(it) = −V0(t) − c(g)V1(t) +
∑
n�1

c+(n, g)

[
4πngV1(t)U

+
0 (4πng) + tV0(t)U

+
1 (4πng)

4πng − t

]

+
∑
n�1

c−(n, g)

[
4πngV1(t)U

−
0 (4πng) + tV0(t)U

−
1 (4πng)

4πng + t

]
, (B.8)

which leads to (2.39).
We show in appendix D that the functions V0,1(t) and U±

0,1(4πng) can be expressed in
terms of the Whittaker functions of the first and second kinds, respectively. As follows from
their integral representation, V0(t) and V1(t) are holomorphic functions of t. As a result, �(it)
is a meromorphic function of t with a (infinite) set of poles located at t = ±4πng with n being
a positive integer.

Let us now prove the master identities (B.7). We start with the second relation in (B.7)
and make use of (B.6) to rewrite the expression on the left-hand side of (B.7) as

(x − y)V+(x, y) e−y = (x − y)

∫ ∞

0
dsV0(x + s)U+

0 (y + s) e−y−s . (B.9)

Let us introduce two auxiliary functions

z1(x) = V1(x), z1(x) + z′
1(x) = V0(x),

(B.10)
z2(x) = e−xU+

1 (x), z2(x) + z′
2(x) = −e−xU+

0 (x),

with Vn(x) and U+
n (x) being given by (B.6). They satisfy the second-order differential equation

d

dx
(xz′

i (x)) =
(

x − 1

2

)
zi(x). (B.11)
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Applying this relation, it is straightforward to verify the following identity:

−(x − y)[z1(x + s) + z′
1(x + s)][z2(y + s) + z′

2(y + s)]

= d

ds
{(y + s)[z2(y + s) + z′

2(y + s)]z1(x + s)}

− d

ds
{(x + s)[z1(x + s) + z′

1(x + s)]z2(y + s)}. (B.12)

It is easy to see that the expression on the left-hand side coincides with the integrand in (B.9).
Therefore, integrating both sides of (B.12) over 0 � s < ∞, we obtain

(x − y)V+(x, y) = −e−s
[
(x + s)V0(x + s)U+

1 (y + s) + (y + s)V1(x + s)U+
0 (y + s)

] ∣∣s=∞
s=0

= −ex + xV0(x)U+
1 (y) + yV1(x)U+

0 (y), (B.13)

where in the second relation we took into account the asymptotic behavior of functions (B.6)
(see equations (D.10) and (D.12)), Vn(s) ∼ ess−3/4 and U+

n (s) ∼ sn−5/4 as s → ∞.
The derivation of the first relation in (B.7) goes along the same lines.

Appendix C. Wronskian-like relations

In this appendix, we present a detailed derivation of relation (4.36) which determines the
small t expansion of the function δγ (t). This function satisfies the infinite system of integral
equations (4.35). In addition, it should vanish at the origin, t = 0, and have a simple pole at
t = −iπg with the residue 2igm′ (see equation (4.33)). To fulfill these requirements, we split
δγ (it) into the sum of two functions:

δγ (it) = γ̂ (it) − 2m′

π

t

t + πg
, (C.1)

where, by construction, γ̂ (it) is an entire function vanishing at t = 0 and its Fourier transform
has a support on the interval [−1, 1]. Similar to (2.2), we decompose δγ (t) and γ̂ (t) into the
sum of two functions with a definite parity

δγ+(t) = γ̂+(t) − 2m′

π

t2

t2 + (πg)2
,

(C.2)

δγ−(t) = γ̂−(t) +
2gm′t

t2 + π2g2
.

Then, we substitute these relations into (4.35) and obtain the system of inhomogeneous integral
equations for the functions γ̂±(t):∫ ∞

0

dt

t
J2n−1(t)

[
γ̂−(t)

1 − e−t/2g
+

γ̂+(t)

et/2g − 1

]
= h2n−1(g),

(C.3)∫ ∞

0

dt

t
J2n(t)

[
γ̂+(t)

1 − e−t/2g
− γ̂−(t)

et/2g − 1

]
= h2n(g),

with inhomogeneous terms being given by

h2n−1 = 2m′

π

∫ ∞

0

dtJ2n−1(t)

t2 + (πg)2

[
t

et/(2g) − 1
− πg

1 − e−t/(2g)

]
,

(C.4)

h2n = 2m′

π

∫ ∞

0

dtJ2n(t)

t2 + (πg)2

[
πg

et/(2g) − 1
+

t

1 − e−t/(2g)

]
.

Comparing these relations with (C.3) we observe that they only differ by the form of
inhomogeneous terms and can be obtained from one another through the substitution

γ̂±(t) → γ±(t), h2n−1 → 1
2δn,1, h2n → 0. (C.5)
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In a close analogy with (2.10), we look for a solution to (C.3) in the form of Bessel series:

γ̂−(t) = 2
∑
n�1

(2n − 1)J2n−1(t)γ̂2n−1(g),

(C.6)
γ̂+(t) = 2

∑
n�1

(2n)J2n(t)γ̂2n(g).

For small t, we have γ̂−(t) = t γ̂1 + O(t2) and γ̂+(t) = O(t2). Then it follows from (C.1) that

δγ (t) = iγ̂−(t) +
2im′

π2g
t + O(t2) = it

(
γ̂1 +

2m′

π2g

)
+ O(t2), (C.7)

so that the leading asymptotics is controlled by the coefficient γ̂1.
Let us multiply both sides of the first relation in (C.3) by (2n − 1)γ2n−1 and sum both

sides over n � 1 with the help of (2.10). In a similar manner, we multiply the second relation
in (C.3) by (2n)γ2n and follow the same steps. Then, we subtract the second relation from the
first one and obtain∫ ∞

0

dt

t

[
γ−(t)γ̂−(t) − γ+(t)γ̂+(t)

1 − e−t/2g
+

γ−(t)γ̂+(t) + γ+(t)γ̂−(t)

et/2g − 1

]
= 2

∑
n�1

[(2n − 1)γ2n−1h2n−1 − (2n)γ2nh2n] . (C.8)

We note that the expression on the left-hand side of this relation is invariant under exchange
γ̂±(t) ↔ γ±(t). Therefore, the right-hand side should also be invariant under (C.5) leading to

γ̂1 = 2
∑
n�1

[(2n − 1)γ2n−1h2n−1 − (2n)γ2nh2n] . (C.9)

Replacing h2n−1 and h2n by their expressions (C.4) and taking into account (2.10), we obtain
that γ̂1 is given by the integral involving the functions γ±(t). It takes a much simpler form
when expressed in terms of the functions �±(t) defined in (2.4):

γ̂1 = −m′

π

∫ ∞

0
dt

[
πg

t2 + π2g2
(�−(t) − �+(t)) +

t

t2 + π2g2
(�−(t) + �+(t))

]
. (C.10)

Making use of identities

πg

t2 + π2g2
=

∫ ∞

0
du e−πgu cos (ut),

(C.11)
t

t2 + π2g2
=

∫ ∞

0
du e−πgu sin (ut),

we rewrite γ̂1(g) as

γ̂1 = −m′

π

∫ ∞

0
du e−πgu

[ ∫ ∞

0
dt cos(ut) (�−(t) − �+(t))

+
∫ ∞

0
dt sin(ut) (�−(t) + �+(t))

]
. (C.12)

Let us spit the u-integral into 0 � u � 1 and u > 1. We observe that for u2 � 1, the t-integrals
in this relation are given by (2.6). Then, we perform integration over u � 1 and find after
some algebra (with �(t) = �+(t) + i�−(t))

γ̂1 = − 2m′

π2g
(1 − e−πg) −

√
2m′

π
e−πgRe

[ ∫ ∞

0

dt

t + iπg
ei(t−π/4)�(t)

]
. (C.13)

Substituting this relation into (C.7), we arrive at (4.36).
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Appendix D. Relation to the Whittaker functions

In this appendix, we summarize the properties of special functions that we encountered in our
analysis.

D.1. Integral representations

Let us first consider the functions Vn(x) (with n = 0, 1) introduced in (2.41). As follows
from their integral representation, V0(x) and V1(x) are entire functions on a complex x-plane.
Changing the integration variable in (2.41) as u = 2t − 1 and u = 1 − 2t , we obtain two
equivalent representations:

Vn(x) = 1

π
23/2−n ex

∫ 1

0
dt t−1/4(1 − t)1/4−n e−2tx ,

= 1

π
23/2−n e−x

∫ 1

0
dt t1/4−n(1 − t)−1/4 e2tx , (D.1)

which give rise to the following expressions for Vn(x) (with n = 0, 1) in terms of the Whittaker
functions of the first kind:

Vn(x) = 2−n
�

(
5
4 − n

)
�

(
5
4

)
�(2 − n)

(2x)n/2−1Mn/2−1/4,1/2−n/2(2x),

= 2−n
�

(
5
4 − n

)
�

(
5
4

)
�(2 − n)

(−2x)n/2−1M1/4−n/2,1/2−n/2(−2x). (D.2)

In distinction with Vn(x), the Whittaker function Mn/2−1/4,1/2−n/2(2x) is an analytical function
of x on the complex plane with the cut along the negative semi-axis. The same is true for
the factor (2x)n/2−1 so that the product of two functions on the right-hand side of (D.2) is a
single-valued analytical function in the whole complex plane. The two representations (D.2)
are equivalent in virtue of the relation

Mn/2−1/4,1/2−n/2(2x) = e±iπ(1−n/2)M1/4−n/2,1/2−n/2(−2x) (for Imx ≷ 0), (D.3)

where the upper and lower signs in the exponent correspond to Imx > 0 and Imx < 0,
respectively.

Let us now consider the functions U±
0 (x) and U±

1 (x). For real positive x, they have an
integral representation (2.41). It is easy to see that four different integrals in (2.41) can be
found as special cases of the following generic integral:

Uab(x) = 1

2

∫ ∞

1
du e−x(u−1)(u + 1)a+b−1/2(u − 1)b−a−1/2, (D.4)

defined for x > 0. Changing the integration variable as u = t/x + 1, we obtain

Uab(x) = 2a+b−3/2xa−b−1/2
∫ ∞

0
dt e−t t b−a−1/2

(
1 +

t

2x

)a+b−1/2

. (D.5)

The integral entering this relation can be expressed in terms of the Whittaker functions of the
second kind or an equivalently confluent hypergeometric function of the second kind:

Uab(x) = 2b−3/2�

(
1

2
− a + b

)
x−b−1/2 exWab(2x),

= 1

2
�

(
1

2
− a + b

)
U

(
1

2
− a + b, 1 + 2b; 2x

)
. (D.6)
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This relation can be used to analytically continue Uab(x) from x > 0 to the whole complex
x-plane with the cut along the negative semi-axis. Matching (D.4) to (2.41), we obtain the
following relations for the functions U±

0 (x) and U±
1 (x):

U+
0 (x) = 1

2
�

(
5

4

)
x−1 exW−1/4,1/2(2x), U+

1 (x) = 1

2
�

(
1

4

)
(2x)−1/2 exW1/4,0(2x),

(D.7)

U−
0 (x) = 1

2
�

(
3

4

)
x−1 exW1/4,1/2(2x), U−

1 (x) = 1

2
�

(
3

4

)
(2x)−1/2 exW−1/4,0(2x).

The functions V1(±x), U±
1 (x) and V0(±x), U±

0 (x) satisfy the same Whittaker differential
equation and, as a consequence, they satisfy Wronskian relations

V1(−x)U−
0 (x) − V0(−x)U−

1 (x) = V1(x)U+
0 (x) + V0(x)U+

1 (x) = ex

x
. (D.8)

The same relations also follow from (B.7) for x = ±y. In addition,

U+
0 (x)U−

1 (−x) + U+
1 (x)U−

0 (−x) = π

2
√

2x
e± 3iπ

4 , (for Imx ≷ 0). (D.9)

Combining together (D.8) and (D.9), we obtain the following relations between the functions:

V0(x) = 2
√

2

π
e∓ 3iπ

4
[
exU−

0 (−x) + e−xU+
0 (x)

]
,

(D.10)

V1(x) = 2
√

2

π
e∓ 3iπ

4
[
exU−

1 (−x) − e−xU+
1 (x)

]
,

where the upper and lower signs correspond to Im x > 0 and Im x < 0, respectively.
At first sight, relations (D.10) look surprising since V0(x) and V1(x) are entire functions

in the complex x-plane, while U±
0 (x) and U±

1 (x) are single-valued functions in the same plane
but with a cut along the negative semi-axis. Indeed, one can use relations (D.8) and (D.9) to
compute the discontinuity of these functions across the cut as

�U±
0 (−x) = ±π

4
e−xV0(∓x)θ(x),

(D.11)
�U±

1 (−x) = −π

4
e−xV1(∓x)θ(x),

where �U(−x) ≡ limε→0[U(−x + iε)−U(−x − iε)]/(2i) and θ(x) is a step function. Then,
one verifies with the help of these identities that the linear combinations of U-functions on the
right-hand side of (D.10) have zero discontinuity across the cut and, therefore, they are well
defined in the whole complex plane.

D.2. Asymptotic expansions

For our purposes, we need an asymptotic expansion of functions Vn(x) and U±
n (x) at large

real x. Let us start with the latter functions and consider a generic integral (D.6).
To find an asymptotic expansion of the function Uab(x) at large x, it suffices to replace

the last factor in the integrand (D.6) in powers of t/(2x) and integrate term by term. In this
way, we find from (D.6) and (D.7)

U+
0 (x) = (2x)−5/4�

(
5

4

)
F

(
1

4
,

5

4
| − 1

2x

)
= (2x)−5/4�

(
5

4

) [
1 − 5

32x
+ · · ·

]
,

U−
0 (x) = (2x)−3/4�

(
3

4

)
F

(
−1

4
,

3

4
| − 1

2x

)
= (2x)−3/4�

(
3

4

) [
1 +

3

32x
+ · · ·

]
,
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U+
1 (x) = (2x)−1/4 1

2
�

(
1

4

)
F

(
1

4
,

1

4
| − 1

2x

)
= (2x)−1/4 1

2
�

(
1

4

) [
1 − 1

32x
+ · · ·

]
,

U−
1 (x) = (2x)−3/4 1

2
�

(
3

4

)
F

(
3

4
,

3

4
| − 1

2x

)
= (2x)−3/4 1

2
�

(
3

4

) [
1 − 9

32x
+ · · ·

]
,

(D.12)

where the function F(a, b| − 1
2x

) is defined in (2.56).
Note that the expansion coefficients in (D.12) grow factorially to higher orders but the

series are Borel summable for x > 0. For x < 0, one has to distinguish the functions
U±

n (x + iε) and U±
n (x − iε) (with ε → 0) which define the analytical continuation of the

function U±
n (x) to the upper and lower edges of the cut, respectively. In contrast with this, the

functions Vn(x) are well defined on the whole real axis. Still, to make use of relations (D.10)
we have to specify the U-functions on the cut. As an example, let us consider V0(−πg) in the
limit g → ∞ and apply (D.10)

V0(−πg) = 2
√

2

π
e− 3iπ

4 eπg
[
U+

0 (−πg + iε) + e−2πgU−
0 (πg)

]
, (D.13)

where ε → 0 and we have chosen to define the U-functions on the upper edge of the
cut. Written in this form, both terms inside the square brackets are well defined separately.
Replacing U±

0 functions in (D.13) by their expressions (D.12) in terms of F-functions, we find

V0(−πg) = (2πg)−5/4 eπg

�
(

3
4

) [
F

(
1

4
,

5

4
| 1

2πg
+ iε

)
+ �2F

(
−1

4
,

3

4
| − 1

2πg

)]
, (D.14)

with �2 being given by

�2 = σ
�

(
3
4

)
�

(
5
4

) e−2πg(2πg)1/2, σ = e− 3iπ
4 . (D.15)

Since the second term on the right-hand side of (D.14) is exponentially suppressed at large g,
we may treat it as a nonperturbative correction. Repeating the same analysis for V1(−πg), we
obtain from (D.10) and (D.12)

V1(−πg) = (2πg)−5/4 eπg

2�
(

3
4

) [
8πgF

(
1

4
,

1

4
| 1

2πg
+ iε

)
+ �2F

(
3

4
,

3

4
| − 1

2πg

)]
. (D.16)

We would like to stress that the ‘+iε’ prescription in the first term in (D.14) and the phase factor
σ = e− 3iπ

4 in (D.15) follow unambiguously from (D.13). Had we defined the U-functions on
the lower edge of the cut, we would get the expression for V0(−πg) with the ‘−iε’ prescription
and the phase factor e

3iπ
4 . The two expressions are however equivalent since discontinuity of

the first term in (D.14) compensates the change of the phase factor in front of the second term:

F

(
1

4
,

5

4
| 1

2πg
+ iε

)
− F

(
1

4
,

5

4
| 1

2πg
− iε

)
= i

√
2�2

σ
F

(
−1

4
,

3

4
| − 1

2πg

)
. (D.17)

If one neglected the ‘+iε’ prescription in (D.13) and formally expanded the first term in
(D.14) in powers of 1/g, this would lead to non-Borel summable series. This series suffers
from Borel ambiguity which are exponentially small for large g and produce the contribution
of the same order as the second term on the right-hand side of (D.14). Relation (D.14) suggests
how to give a meaning to this series. Namely, one should first resum the series for negative g

where it is Borel summable and, then, analytically continue it to the upper edge of the cut at
positive g.
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Appendix E. Expression for the mass gap

In this appendix, we derive the expression for the mass gap (4.4). To this end, we replace
�(4πgit) in (4.1) by its expression (4.2) and perform integration over t on the right-hand side
of (4.1). We recall that, in relation (4.2), V0,1(4πgt) are entire functions of t, while f0,1(4πgt)

are meromorphic functions defined in (4.3). It is convenient to decompose �(4πgit)
/(

t + 1
4

)
into a sum of simple poles as

�(4πgit)

t + 1
4

=
∑
k=0,1

fk(−πg)
Vk(4πgt)

t + 1
4

+
∑
k=0,1

fk(4πgt) − fk(−πg)

t + 1
4

Vk(4πgt), (E.1)

where the second term is regular at t = −1/4. Substituting this relation into (4.1) and
replacing fk(4πgt) by their expressions (4.3), we encounter the following integral:

Rk(4πgs) = Re

[∫ −i∞

0
dt e−4πgt−iπ/4 Vk(4πgt)

t − s

]
= Re

[∫ −i∞

0
dt e−t−iπ/4 Vk(t)

t − 4πgs

]
.

(E.2)

Then, the integral in (4.1) can be expressed in terms of the R-function as

Re

[ ∫ −i∞

0
dt e−4πgt−iπ/4 �(4πgit)

t + 1
4

]
= f0(−πg)R0(−πg) + f1(−πg)R1(−πg)

−
∑
n�1

nc+(n, g)

n + 1
4

[
U+

1 (4πng)R0(4πgn) + U+
0 (4πng)R1(4πgn)

]
+

∑
n�1

nc−(n, g)

n − 1
4

[U−
1 (4πng)R0(−4πgn) − U−

0 (4πng)R1(−4πgn)], (E.3)

where the last two lines correspond to the second sum on the right-hand side of (E.1), and we
took into account the fact that the coefficients c±(n, g) are real.

Let us evaluate the integral (E.2) and choose for simplicity R0(s). We have to distinguish
two cases: s > 0 and s < 0. For s > 0, we have

R0(s) = −Re

[
e−iπ/4

∫ 1

−∞
dv e−(1−v)s

∫ −i∞

0
dt e−vtV0(t)

]
=

√
2

π
Re

[
e−iπ/4

∫ 1

−∞
dv e−(1−v)s

∫ 1

−1
du

(1 + u)1/4(1 − u)−1/4

u − v − iε

]
, (E.4)

where in the second relation we replaced V0(t) by its integral representation (2.41). Integration
over u can be carried out with the help of identity

1√
2π

∫ 1

−1
du

(1 + u)1/4−k(1 − u)−1/4

u − v − iε
= δk,0−(v+1)−k×

⎧⎨⎩
(

v+1
v−1

)1/4
, v2 > 1

e−iπ/4
(

1+v
1−v

)1/4
, v2 < 1.

(E.5)

In this way, we obtain from (E.4)

R0(s)
s>0=

√
2

[
1

s
−

∫ −1

−∞
dv e−(1−v)s

(
v + 1

v − 1

)1/4
]

=
√

2

[
1

s
− 2 e−2sU+

0 (s)

]
, (E.6)

with the function U+
0 (s) defined in (2.41). In a similar manner, for s < 0 we get

R0(s)
s<0=

√
2

[
1

s
+ 2U−

0 (−s)

]
, (E.7)
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together with

R1(s) = 2
√

2
[
θ(−s)U−

1 (−s) + θ(s) e−2sU+
1 (s)

]
. (E.8)

Then, we substitute relations (E.6))–((E.8) into (E.3) and find

Re

[ ∫ −i∞

0
dt e−4πgt−iπ/4 �(4πgit)

t + 1
4

]
= 2

√
2f0(−πg)

[
U−

0 (πg) − 1

2πg

]
+ 2

√
2f1(−πg)U−

1 (πg) +

√
2

πg
[f0(−πg) + 1] , (E.9)

where the last term on the right-hand side corresponds to the last two lines in (E.3) (see
equation (2.40)). Substitution of (E.9) into (4.1) yields the expression for the mass scale (4.4).
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